NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iotacl GIF version

Theorem iotacl 4363
Description: Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 4340). If you have a bounded iota-based definition, riotacl2 in set.mm may be useful.

(Contributed by Andrew Salmon, 1-Aug-2011.)

Assertion
Ref Expression
iotacl (∃!xφ → (℩xφ) {x φ})

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 4358 . 2 (∃!xφ → [̣(℩xφ) / xφ)
2 df-sbc 3048 . 2 ([̣(℩xφ) / xφ ↔ (℩xφ) {x φ})
31, 2sylib 188 1 (∃!xφ → (℩xφ) {x φ})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  ∃!weu 2204  {cab 2339  wsbc 3047  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340
This theorem is referenced by:  reiotacl2  4364
  Copyright terms: Public domain W3C validator