New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iota4 | GIF version |
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iota4 | ⊢ (∃!xφ → [̣(℩xφ) / x]̣φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2208 | . 2 ⊢ (∃!xφ ↔ ∃z∀x(φ ↔ x = z)) | |
2 | bi2 189 | . . . . . 6 ⊢ ((φ ↔ x = z) → (x = z → φ)) | |
3 | 2 | alimi 1559 | . . . . 5 ⊢ (∀x(φ ↔ x = z) → ∀x(x = z → φ)) |
4 | sb2 2023 | . . . . 5 ⊢ (∀x(x = z → φ) → [z / x]φ) | |
5 | 3, 4 | syl 15 | . . . 4 ⊢ (∀x(φ ↔ x = z) → [z / x]φ) |
6 | iotaval 4351 | . . . . . 6 ⊢ (∀x(φ ↔ x = z) → (℩xφ) = z) | |
7 | 6 | eqcomd 2358 | . . . . 5 ⊢ (∀x(φ ↔ x = z) → z = (℩xφ)) |
8 | dfsbcq2 3050 | . . . . 5 ⊢ (z = (℩xφ) → ([z / x]φ ↔ [̣(℩xφ) / x]̣φ)) | |
9 | 7, 8 | syl 15 | . . . 4 ⊢ (∀x(φ ↔ x = z) → ([z / x]φ ↔ [̣(℩xφ) / x]̣φ)) |
10 | 5, 9 | mpbid 201 | . . 3 ⊢ (∀x(φ ↔ x = z) → [̣(℩xφ) / x]̣φ) |
11 | 10 | exlimiv 1634 | . 2 ⊢ (∃z∀x(φ ↔ x = z) → [̣(℩xφ) / x]̣φ) |
12 | 1, 11 | sylbi 187 | 1 ⊢ (∃!xφ → [̣(℩xφ) / x]̣φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 [wsb 1648 ∃!weu 2204 [̣wsbc 3047 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
This theorem is referenced by: iota4an 4359 iotacl 4363 |
Copyright terms: Public domain | W3C validator |