New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iotaeq | GIF version |
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotaeq | ⊢ (∀x x = y → (℩xφ) = (℩yφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 2022 | . . . . . . 7 ⊢ (∀x x = y → ([z / x]φ ↔ [z / y]φ)) | |
2 | df-clab 2340 | . . . . . . 7 ⊢ (z ∈ {x ∣ φ} ↔ [z / x]φ) | |
3 | df-clab 2340 | . . . . . . 7 ⊢ (z ∈ {y ∣ φ} ↔ [z / y]φ) | |
4 | 1, 2, 3 | 3bitr4g 279 | . . . . . 6 ⊢ (∀x x = y → (z ∈ {x ∣ φ} ↔ z ∈ {y ∣ φ})) |
5 | 4 | eqrdv 2351 | . . . . 5 ⊢ (∀x x = y → {x ∣ φ} = {y ∣ φ}) |
6 | 5 | eqeq1d 2361 | . . . 4 ⊢ (∀x x = y → ({x ∣ φ} = {z} ↔ {y ∣ φ} = {z})) |
7 | 6 | abbidv 2467 | . . 3 ⊢ (∀x x = y → {z ∣ {x ∣ φ} = {z}} = {z ∣ {y ∣ φ} = {z}}) |
8 | 7 | unieqd 3902 | . 2 ⊢ (∀x x = y → ∪{z ∣ {x ∣ φ} = {z}} = ∪{z ∣ {y ∣ φ} = {z}}) |
9 | df-iota 4339 | . 2 ⊢ (℩xφ) = ∪{z ∣ {x ∣ φ} = {z}} | |
10 | df-iota 4339 | . 2 ⊢ (℩yφ) = ∪{z ∣ {y ∣ φ} = {z}} | |
11 | 8, 9, 10 | 3eqtr4g 2410 | 1 ⊢ (∀x x = y → (℩xφ) = (℩yφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 {csn 3737 ∪cuni 3891 ℩cio 4337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-uni 3892 df-iota 4339 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |