New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq1d | GIF version |
Description: Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) |
Ref | Expression |
---|---|
eqeq1d.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
eqeq1d | ⊢ (φ → (A = C ↔ B = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | eqeq1 2359 | . 2 ⊢ (A = B → (A = C ↔ B = C)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (A = C ↔ B = C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: sbceq2g 3159 csbhypf 3172 csbiebt 3173 csbiebg 3176 disjssun 3609 sneqrg 3875 preqr2g 4127 preq12b 4128 preq12bg 4129 opkthg 4132 iotaeq 4348 iotabi 4349 eladdci 4400 addcid1 4406 elsuc 4414 addcass 4416 nndisjeq 4430 preaddccan2lem1 4455 tfinltfinlem1 4501 sucoddeven 4512 sfin01 4529 phiall 4619 xpcan 5058 xpcan2 5059 dmsnopg 5067 fneq1 5174 fnun 5190 fnresdisj 5194 fnimadisj 5204 foeq1 5266 foco 5280 fvun1 5380 fvco2 5383 fnasrn 5418 dffo3 5423 fvsng 5447 fconstfv 5457 dff13f 5473 f1fveq 5474 f1elima 5475 ov3 5600 ovelimab 5611 caovcan 5629 caovmo 5646 brcupg 5815 brcomposeg 5820 brdisjg 5822 qsdisj 5996 mapsn 6027 endisj 6052 enadj 6061 enmap2lem3 6066 enmap1lem3 6072 enprmaplem5 6081 enprmaplem6 6082 1cnc 6140 ncdisjeq 6149 addceq0 6220 letc 6232 ce0lenc1 6240 muc0or 6253 csucex 6260 addccan2nclem2 6265 nncdiv3 6278 nnc3n3p1 6279 nchoicelem1 6290 nchoicelem9 6298 nchoicelem14 6303 nchoicelem16 6305 nchoicelem17 6306 nchoice 6309 cantcb 6336 |
Copyright terms: Public domain | W3C validator |