NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iunss GIF version

Theorem iunss 4008
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss (x A B Cx A B C)
Distinct variable group:   x,C
Allowed substitution hints:   A(x)   B(x)

Proof of Theorem iunss
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3972 . . 3 x A B = {y x A y B}
21sseq1i 3296 . 2 (x A B C ↔ {y x A y B} C)
3 abss 3336 . 2 ({y x A y B} Cy(x A y By C))
4 dfss2 3263 . . . 4 (B Cy(y By C))
54ralbii 2639 . . 3 (x A B Cx A y(y By C))
6 ralcom4 2878 . . 3 (x A y(y By C) ↔ yx A (y By C))
7 r19.23v 2731 . . . 4 (x A (y By C) ↔ (x A y By C))
87albii 1566 . . 3 (yx A (y By C) ↔ y(x A y By C))
95, 6, 83bitrri 263 . 2 (y(x A y By C) ↔ x A B C)
102, 3, 93bitri 262 1 (x A B Cx A B C)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   wcel 1710  {cab 2339  wral 2615  wrex 2616   wss 3258  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-iun 3972
This theorem is referenced by:  iunss2  4012
  Copyright terms: Public domain W3C validator