![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > iunss | GIF version |
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunss | ⊢ (∪x ∈ A B ⊆ C ↔ ∀x ∈ A B ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 3971 | . . 3 ⊢ ∪x ∈ A B = {y ∣ ∃x ∈ A y ∈ B} | |
2 | 1 | sseq1i 3295 | . 2 ⊢ (∪x ∈ A B ⊆ C ↔ {y ∣ ∃x ∈ A y ∈ B} ⊆ C) |
3 | abss 3335 | . 2 ⊢ ({y ∣ ∃x ∈ A y ∈ B} ⊆ C ↔ ∀y(∃x ∈ A y ∈ B → y ∈ C)) | |
4 | dfss2 3262 | . . . 4 ⊢ (B ⊆ C ↔ ∀y(y ∈ B → y ∈ C)) | |
5 | 4 | ralbii 2638 | . . 3 ⊢ (∀x ∈ A B ⊆ C ↔ ∀x ∈ A ∀y(y ∈ B → y ∈ C)) |
6 | ralcom4 2877 | . . 3 ⊢ (∀x ∈ A ∀y(y ∈ B → y ∈ C) ↔ ∀y∀x ∈ A (y ∈ B → y ∈ C)) | |
7 | r19.23v 2730 | . . . 4 ⊢ (∀x ∈ A (y ∈ B → y ∈ C) ↔ (∃x ∈ A y ∈ B → y ∈ C)) | |
8 | 7 | albii 1566 | . . 3 ⊢ (∀y∀x ∈ A (y ∈ B → y ∈ C) ↔ ∀y(∃x ∈ A y ∈ B → y ∈ C)) |
9 | 5, 6, 8 | 3bitrri 263 | . 2 ⊢ (∀y(∃x ∈ A y ∈ B → y ∈ C) ↔ ∀x ∈ A B ⊆ C) |
10 | 2, 3, 9 | 3bitri 262 | 1 ⊢ (∪x ∈ A B ⊆ C ↔ ∀x ∈ A B ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 {cab 2339 ∀wral 2614 ∃wrex 2615 ⊆ wss 3257 ∪ciun 3969 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-iun 3971 |
This theorem is referenced by: iunss2 4011 |
Copyright terms: Public domain | W3C validator |