| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iunss | GIF version | ||
| Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunss | ⊢ (∪x ∈ A B ⊆ C ↔ ∀x ∈ A B ⊆ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 3972 | . . 3 ⊢ ∪x ∈ A B = {y ∣ ∃x ∈ A y ∈ B} | |
| 2 | 1 | sseq1i 3296 | . 2 ⊢ (∪x ∈ A B ⊆ C ↔ {y ∣ ∃x ∈ A y ∈ B} ⊆ C) |
| 3 | abss 3336 | . 2 ⊢ ({y ∣ ∃x ∈ A y ∈ B} ⊆ C ↔ ∀y(∃x ∈ A y ∈ B → y ∈ C)) | |
| 4 | dfss2 3263 | . . . 4 ⊢ (B ⊆ C ↔ ∀y(y ∈ B → y ∈ C)) | |
| 5 | 4 | ralbii 2639 | . . 3 ⊢ (∀x ∈ A B ⊆ C ↔ ∀x ∈ A ∀y(y ∈ B → y ∈ C)) |
| 6 | ralcom4 2878 | . . 3 ⊢ (∀x ∈ A ∀y(y ∈ B → y ∈ C) ↔ ∀y∀x ∈ A (y ∈ B → y ∈ C)) | |
| 7 | r19.23v 2731 | . . . 4 ⊢ (∀x ∈ A (y ∈ B → y ∈ C) ↔ (∃x ∈ A y ∈ B → y ∈ C)) | |
| 8 | 7 | albii 1566 | . . 3 ⊢ (∀y∀x ∈ A (y ∈ B → y ∈ C) ↔ ∀y(∃x ∈ A y ∈ B → y ∈ C)) |
| 9 | 5, 6, 8 | 3bitrri 263 | . 2 ⊢ (∀y(∃x ∈ A y ∈ B → y ∈ C) ↔ ∀x ∈ A B ⊆ C) |
| 10 | 2, 3, 9 | 3bitri 262 | 1 ⊢ (∪x ∈ A B ⊆ C ↔ ∀x ∈ A B ⊆ C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 ∪ciun 3970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
| This theorem is referenced by: iunss2 4012 |
| Copyright terms: Public domain | W3C validator |