New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nceqi | GIF version |
Description: Equality inference for cardinality. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
nceqi.1 | ⊢ A = B |
Ref | Expression |
---|---|
nceqi | ⊢ Nc A = Nc B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nceqi.1 | . 2 ⊢ A = B | |
2 | nceq 6108 | . 2 ⊢ (A = B → Nc A = Nc B) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Nc A = Nc B |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Nc cnc 6091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-sn 3741 df-ima 4727 df-ec 5947 df-nc 6101 |
This theorem is referenced by: muc0 6142 ncpw1c 6154 1p1e2c 6155 2p1e3c 6156 ce0 6190 ce2nc1 6193 tcncv 6226 addcdi 6250 nchoicelem19 6307 vncan 6337 |
Copyright terms: Public domain | W3C validator |