![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 1p1e2c | GIF version |
Description: One plus one equals two. Theorem *110.64 of [WhiteheadRussell] p. 86. This theorem is occasionally useful. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
1p1e2c | ⊢ (1c +c 1c) = 2c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4110 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | n0i 3555 | . . . . . 6 ⊢ (∅ ∈ V → ¬ V = ∅) | |
3 | 1, 2 | ax-mp 8 | . . . . 5 ⊢ ¬ V = ∅ |
4 | vvex 4109 | . . . . . 6 ⊢ V ∈ V | |
5 | 4 | elsnc 3756 | . . . . 5 ⊢ (V ∈ {∅} ↔ V = ∅) |
6 | 3, 5 | mtbir 290 | . . . 4 ⊢ ¬ V ∈ {∅} |
7 | disjsn 3786 | . . . 4 ⊢ (({∅} ∩ {V}) = ∅ ↔ ¬ V ∈ {∅}) | |
8 | 6, 7 | mpbir 200 | . . 3 ⊢ ({∅} ∩ {V}) = ∅ |
9 | snex 4111 | . . . 4 ⊢ {∅} ∈ V | |
10 | snex 4111 | . . . 4 ⊢ {V} ∈ V | |
11 | 9, 10 | ncdisjun 6136 | . . 3 ⊢ (({∅} ∩ {V}) = ∅ → Nc ({∅} ∪ {V}) = ( Nc {∅} +c Nc {V})) |
12 | 8, 11 | ax-mp 8 | . 2 ⊢ Nc ({∅} ∪ {V}) = ( Nc {∅} +c Nc {V}) |
13 | df-2c 6104 | . . 3 ⊢ 2c = Nc {∅, V} | |
14 | df-pr 3742 | . . . 4 ⊢ {∅, V} = ({∅} ∪ {V}) | |
15 | 14 | nceqi 6109 | . . 3 ⊢ Nc {∅, V} = Nc ({∅} ∪ {V}) |
16 | 13, 15 | eqtri 2373 | . 2 ⊢ 2c = Nc ({∅} ∪ {V}) |
17 | 1 | df1c3 6140 | . . 3 ⊢ 1c = Nc {∅} |
18 | 4 | df1c3 6140 | . . 3 ⊢ 1c = Nc {V} |
19 | 17, 18 | addceq12i 4388 | . 2 ⊢ (1c +c 1c) = ( Nc {∅} +c Nc {V}) |
20 | 12, 16, 19 | 3eqtr4ri 2384 | 1 ⊢ (1c +c 1c) = 2c |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 {csn 3737 {cpr 3738 1cc1c 4134 +c cplc 4375 Nc cnc 6091 2cc2c 6094 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-nc 6101 df-2c 6104 |
This theorem is referenced by: tc2c 6166 2nnc 6167 el2c 6191 2ne0c 6242 nncdiv3 6277 nnc3n3p2 6279 nnc3p1n3p2 6280 nchoicelem1 6289 nchoicelem2 6290 nchoicelem9 6297 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |