New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 1p1e2c | GIF version |
Description: One plus one equals two. Theorem *110.64 of [WhiteheadRussell] p. 86. This theorem is occasionally useful. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
1p1e2c | ⊢ (1c +c 1c) = 2c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4111 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | n0i 3556 | . . . . . 6 ⊢ (∅ ∈ V → ¬ V = ∅) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ¬ V = ∅ |
4 | vvex 4110 | . . . . . 6 ⊢ V ∈ V | |
5 | 4 | elsnc 3757 | . . . . 5 ⊢ (V ∈ {∅} ↔ V = ∅) |
6 | 3, 5 | mtbir 290 | . . . 4 ⊢ ¬ V ∈ {∅} |
7 | disjsn 3787 | . . . 4 ⊢ (({∅} ∩ {V}) = ∅ ↔ ¬ V ∈ {∅}) | |
8 | 6, 7 | mpbir 200 | . . 3 ⊢ ({∅} ∩ {V}) = ∅ |
9 | snex 4112 | . . . 4 ⊢ {∅} ∈ V | |
10 | snex 4112 | . . . 4 ⊢ {V} ∈ V | |
11 | 9, 10 | ncdisjun 6137 | . . 3 ⊢ (({∅} ∩ {V}) = ∅ → Nc ({∅} ∪ {V}) = ( Nc {∅} +c Nc {V})) |
12 | 8, 11 | ax-mp 5 | . 2 ⊢ Nc ({∅} ∪ {V}) = ( Nc {∅} +c Nc {V}) |
13 | df-2c 6105 | . . 3 ⊢ 2c = Nc {∅, V} | |
14 | df-pr 3743 | . . . 4 ⊢ {∅, V} = ({∅} ∪ {V}) | |
15 | 14 | nceqi 6110 | . . 3 ⊢ Nc {∅, V} = Nc ({∅} ∪ {V}) |
16 | 13, 15 | eqtri 2373 | . 2 ⊢ 2c = Nc ({∅} ∪ {V}) |
17 | 1 | df1c3 6141 | . . 3 ⊢ 1c = Nc {∅} |
18 | 4 | df1c3 6141 | . . 3 ⊢ 1c = Nc {V} |
19 | 17, 18 | addceq12i 4389 | . 2 ⊢ (1c +c 1c) = ( Nc {∅} +c Nc {V}) |
20 | 12, 16, 19 | 3eqtr4ri 2384 | 1 ⊢ (1c +c 1c) = 2c |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 {csn 3738 {cpr 3739 1cc1c 4135 +c cplc 4376 Nc cnc 6092 2cc2c 6095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 df-2c 6105 |
This theorem is referenced by: tc2c 6167 2nnc 6168 el2c 6192 2ne0c 6243 nncdiv3 6278 nnc3n3p2 6280 nnc3p1n3p2 6281 nchoicelem1 6290 nchoicelem2 6291 nchoicelem9 6298 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |