| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nceqd | GIF version | ||
| Description: Equality deduction for cardinality. (Contributed by SF, 24-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| nceqd.1 | ⊢ (φ → A = B) | 
| Ref | Expression | 
|---|---|
| nceqd | ⊢ (φ → Nc A = Nc B) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nceqd.1 | . 2 ⊢ (φ → A = B) | |
| 2 | nceq 6109 | . 2 ⊢ (A = B → Nc A = Nc B) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (φ → Nc A = Nc B) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1642 Nc cnc 6092 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-sn 3742 df-ima 4728 df-ec 5948 df-nc 6102 | 
| This theorem is referenced by: df1c3g 6142 ncspw1eu 6160 pw1eltc 6163 dflec2 6211 nchoicelem7 6296 nchoicelem9 6298 nchoicelem11 6300 nchoicelem12 6301 nchoicelem14 6303 nchoicelem15 6304 nchoicelem16 6305 nchoicelem17 6306 nchoice 6309 | 
| Copyright terms: Public domain | W3C validator |