Step | Hyp | Ref
| Expression |
1 | | dff13 5472 |
. 2
⊢ (F:A–1-1→B
↔ (F:A–→B
∧ ∀w ∈ A ∀v ∈ A ((F ‘w) =
(F ‘v) → w =
v))) |
2 | | dff13f.2 |
. . . . . . . . 9
⊢
ℲyF |
3 | | nfcv 2490 |
. . . . . . . . 9
⊢
Ⅎyw |
4 | 2, 3 | nffv 5335 |
. . . . . . . 8
⊢
Ⅎy(F ‘w) |
5 | | nfcv 2490 |
. . . . . . . . 9
⊢
Ⅎyv |
6 | 2, 5 | nffv 5335 |
. . . . . . . 8
⊢
Ⅎy(F ‘v) |
7 | 4, 6 | nfeq 2497 |
. . . . . . 7
⊢ Ⅎy(F
‘w) = (F ‘v) |
8 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎy w = v |
9 | 7, 8 | nfim 1813 |
. . . . . 6
⊢ Ⅎy((F
‘w) = (F ‘v)
→ w = v) |
10 | | nfv 1619 |
. . . . . 6
⊢ Ⅎv((F
‘w) = (F ‘y)
→ w = y) |
11 | | fveq2 5329 |
. . . . . . . 8
⊢ (v = y →
(F ‘v) = (F
‘y)) |
12 | 11 | eqeq2d 2364 |
. . . . . . 7
⊢ (v = y →
((F ‘w) = (F
‘v) ↔ (F ‘w) =
(F ‘y))) |
13 | | eqeq2 2362 |
. . . . . . 7
⊢ (v = y →
(w = v
↔ w = y)) |
14 | 12, 13 | imbi12d 311 |
. . . . . 6
⊢ (v = y →
(((F ‘w) = (F
‘v) → w = v) ↔
((F ‘w) = (F
‘y) → w = y))) |
15 | 9, 10, 14 | cbvral 2832 |
. . . . 5
⊢ (∀v ∈ A ((F ‘w) =
(F ‘v) → w =
v) ↔ ∀y ∈ A ((F ‘w) =
(F ‘y) → w =
y)) |
16 | 15 | ralbii 2639 |
. . . 4
⊢ (∀w ∈ A ∀v ∈ A ((F ‘w) =
(F ‘v) → w =
v) ↔ ∀w ∈ A ∀y ∈ A ((F ‘w) =
(F ‘y) → w =
y)) |
17 | | nfcv 2490 |
. . . . . 6
⊢
ℲxA |
18 | | dff13f.1 |
. . . . . . . . 9
⊢
ℲxF |
19 | | nfcv 2490 |
. . . . . . . . 9
⊢
Ⅎxw |
20 | 18, 19 | nffv 5335 |
. . . . . . . 8
⊢
Ⅎx(F ‘w) |
21 | | nfcv 2490 |
. . . . . . . . 9
⊢
Ⅎxy |
22 | 18, 21 | nffv 5335 |
. . . . . . . 8
⊢
Ⅎx(F ‘y) |
23 | 20, 22 | nfeq 2497 |
. . . . . . 7
⊢ Ⅎx(F
‘w) = (F ‘y) |
24 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎx w = y |
25 | 23, 24 | nfim 1813 |
. . . . . 6
⊢ Ⅎx((F
‘w) = (F ‘y)
→ w = y) |
26 | 17, 25 | nfral 2668 |
. . . . 5
⊢ Ⅎx∀y ∈ A ((F
‘w) = (F ‘y)
→ w = y) |
27 | | nfv 1619 |
. . . . 5
⊢ Ⅎw∀y ∈ A ((F
‘x) = (F ‘y)
→ x = y) |
28 | | fveq2 5329 |
. . . . . . . 8
⊢ (w = x →
(F ‘w) = (F
‘x)) |
29 | 28 | eqeq1d 2361 |
. . . . . . 7
⊢ (w = x →
((F ‘w) = (F
‘y) ↔ (F ‘x) =
(F ‘y))) |
30 | | eqeq1 2359 |
. . . . . . 7
⊢ (w = x →
(w = y
↔ x = y)) |
31 | 29, 30 | imbi12d 311 |
. . . . . 6
⊢ (w = x →
(((F ‘w) = (F
‘y) → w = y) ↔
((F ‘x) = (F
‘y) → x = y))) |
32 | 31 | ralbidv 2635 |
. . . . 5
⊢ (w = x →
(∀y
∈ A
((F ‘w) = (F
‘y) → w = y) ↔
∀y
∈ A
((F ‘x) = (F
‘y) → x = y))) |
33 | 26, 27, 32 | cbvral 2832 |
. . . 4
⊢ (∀w ∈ A ∀y ∈ A ((F ‘w) =
(F ‘y) → w =
y) ↔ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y)) |
34 | 16, 33 | bitri 240 |
. . 3
⊢ (∀w ∈ A ∀v ∈ A ((F ‘w) =
(F ‘v) → w =
v) ↔ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y)) |
35 | 34 | anbi2i 675 |
. 2
⊢ ((F:A–→B
∧ ∀w ∈ A ∀v ∈ A ((F ‘w) =
(F ‘v) → w =
v)) ↔ (F:A–→B
∧ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |
36 | 1, 35 | bitri 240 |
1
⊢ (F:A–1-1→B
↔ (F:A–→B
∧ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |