New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > peano3 | GIF version |
Description: The successor of a finite cardinal is not zero. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
peano3 | ⊢ (A ∈ Nn → (A +c 1c) ≠ 0c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cnsuc 4401 | . 2 ⊢ (A +c 1c) ≠ 0c | |
2 | 1 | a1i 10 | 1 ⊢ (A ∈ Nn → (A +c 1c) ≠ 0c) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ≠ wne 2516 1cc1c 4134 Nn cnnc 4373 0cc0c 4374 +c cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-1c 4136 df-0c 4377 df-addc 4378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |