Step | Hyp | Ref
| Expression |
1 | | brex 4690 |
. . 3
⊢ (〈A, B〉 PProd (R, S)〈C, D〉 → (〈A, B〉 ∈ V ∧ 〈C, D〉 ∈ V)) |
2 | | opexb 4604 |
. . . 4
⊢ (〈A, B〉 ∈ V ↔ (A
∈ V ∧
B ∈
V)) |
3 | | opexb 4604 |
. . . 4
⊢ (〈C, D〉 ∈ V ↔ (C
∈ V ∧
D ∈
V)) |
4 | 2, 3 | anbi12i 678 |
. . 3
⊢ ((〈A, B〉 ∈ V ∧ 〈C, D〉 ∈ V) ↔ ((A
∈ V ∧
B ∈ V)
∧ (C ∈ V ∧ D ∈
V))) |
5 | 1, 4 | sylib 188 |
. 2
⊢ (〈A, B〉 PProd (R, S)〈C, D〉 → ((A
∈ V ∧
B ∈ V)
∧ (C ∈ V ∧ D ∈
V))) |
6 | | brex 4690 |
. . . 4
⊢ (ARC → (A
∈ V ∧
C ∈
V)) |
7 | | brex 4690 |
. . . 4
⊢ (BSD → (B
∈ V ∧
D ∈
V)) |
8 | 6, 7 | anim12i 549 |
. . 3
⊢ ((ARC ∧ BSD) → ((A
∈ V ∧
C ∈ V)
∧ (B ∈ V ∧ D ∈
V))) |
9 | | an4 797 |
. . 3
⊢ (((A ∈ V ∧ B ∈ V) ∧ (C ∈ V ∧ D ∈ V)) ↔ ((A ∈ V ∧ C ∈ V) ∧ (B ∈ V ∧ D ∈ V))) |
10 | 8, 9 | sylibr 203 |
. 2
⊢ ((ARC ∧ BSD) → ((A
∈ V ∧
B ∈ V)
∧ (C ∈ V ∧ D ∈
V))) |
11 | | opeq1 4579 |
. . . . . . 7
⊢ (x = A →
〈x,
y〉 =
〈A,
y〉) |
12 | 11 | breq1d 4650 |
. . . . . 6
⊢ (x = A →
(〈x,
y〉 PProd (R, S)〈C, D〉 ↔ 〈A, y〉 PProd (R, S)〈C, D〉)) |
13 | | breq1 4643 |
. . . . . . 7
⊢ (x = A →
(xRC ↔
ARC)) |
14 | 13 | anbi1d 685 |
. . . . . 6
⊢ (x = A →
((xRC ∧ ySD) ↔
(ARC ∧ ySD))) |
15 | 12, 14 | bibi12d 312 |
. . . . 5
⊢ (x = A →
((〈x,
y〉 PProd (R, S)〈C, D〉 ↔ (xRC ∧ ySD)) ↔ (〈A, y〉 PProd (R, S)〈C, D〉 ↔ (ARC ∧ ySD)))) |
16 | 15 | imbi2d 307 |
. . . 4
⊢ (x = A →
(((C ∈ V
∧ D ∈ V) → (〈x, y〉 PProd (R, S)〈C, D〉 ↔ (xRC ∧ ySD))) ↔ ((C
∈ V ∧
D ∈ V)
→ (〈A, y〉 PProd (R, S)〈C, D〉 ↔
(ARC ∧ ySD))))) |
17 | | opeq2 4580 |
. . . . . . 7
⊢ (y = B →
〈A,
y〉 =
〈A,
B〉) |
18 | 17 | breq1d 4650 |
. . . . . 6
⊢ (y = B →
(〈A,
y〉 PProd (R, S)〈C, D〉 ↔ 〈A, B〉 PProd (R, S)〈C, D〉)) |
19 | | breq1 4643 |
. . . . . . 7
⊢ (y = B →
(ySD ↔
BSD)) |
20 | 19 | anbi2d 684 |
. . . . . 6
⊢ (y = B →
((ARC ∧ ySD) ↔
(ARC ∧ BSD))) |
21 | 18, 20 | bibi12d 312 |
. . . . 5
⊢ (y = B →
((〈A,
y〉 PProd (R, S)〈C, D〉 ↔ (ARC ∧ ySD)) ↔ (〈A, B〉 PProd (R, S)〈C, D〉 ↔ (ARC ∧ BSD)))) |
22 | 21 | imbi2d 307 |
. . . 4
⊢ (y = B →
(((C ∈ V
∧ D ∈ V) → (〈A, y〉 PProd (R, S)〈C, D〉 ↔ (ARC ∧ ySD))) ↔ ((C
∈ V ∧
D ∈ V)
→ (〈A, B〉 PProd (R, S)〈C, D〉 ↔
(ARC ∧ BSD))))) |
23 | | opeq1 4579 |
. . . . . . 7
⊢ (z = C →
〈z,
w〉 =
〈C,
w〉) |
24 | 23 | breq2d 4652 |
. . . . . 6
⊢ (z = C →
(〈x,
y〉 PProd (R, S)〈z, w〉 ↔ 〈x, y〉 PProd (R, S)〈C, w〉)) |
25 | | breq2 4644 |
. . . . . . 7
⊢ (z = C →
(xRz ↔
xRC)) |
26 | 25 | anbi1d 685 |
. . . . . 6
⊢ (z = C →
((xRz ∧ ySw) ↔
(xRC ∧ ySw))) |
27 | 24, 26 | bibi12d 312 |
. . . . 5
⊢ (z = C →
((〈x,
y〉 PProd (R, S)〈z, w〉 ↔ (xRz ∧ ySw)) ↔ (〈x, y〉 PProd (R, S)〈C, w〉 ↔ (xRC ∧ ySw)))) |
28 | | opeq2 4580 |
. . . . . . 7
⊢ (w = D →
〈C,
w〉 =
〈C,
D〉) |
29 | 28 | breq2d 4652 |
. . . . . 6
⊢ (w = D →
(〈x,
y〉 PProd (R, S)〈C, w〉 ↔ 〈x, y〉 PProd (R, S)〈C, D〉)) |
30 | | breq2 4644 |
. . . . . . 7
⊢ (w = D →
(ySw ↔
ySD)) |
31 | 30 | anbi2d 684 |
. . . . . 6
⊢ (w = D →
((xRC ∧ ySw) ↔
(xRC ∧ ySD))) |
32 | 29, 31 | bibi12d 312 |
. . . . 5
⊢ (w = D →
((〈x,
y〉 PProd (R, S)〈C, w〉 ↔ (xRC ∧ ySw)) ↔ (〈x, y〉 PProd (R, S)〈C, D〉 ↔ (xRC ∧ ySD)))) |
33 | | df-pprod 5739 |
. . . . . . . 8
⊢ PProd (R, S) = ((R ∘ 1st ) ⊗ (S ∘
2nd )) |
34 | 33 | breqi 4646 |
. . . . . . 7
⊢ (〈x, y〉 PProd (R, S)〈z, w〉 ↔ 〈x, y〉((R ∘
1st ) ⊗ (S ∘ 2nd ))〈z, w〉) |
35 | | trtxp 5782 |
. . . . . . 7
⊢ (〈x, y〉((R ∘
1st ) ⊗ (S ∘ 2nd ))〈z, w〉 ↔ (〈x, y〉(R ∘
1st )z ∧ 〈x, y〉(S ∘ 2nd )w)) |
36 | 34, 35 | bitri 240 |
. . . . . 6
⊢ (〈x, y〉 PProd (R, S)〈z, w〉 ↔ (〈x, y〉(R ∘
1st )z ∧ 〈x, y〉(S ∘ 2nd )w)) |
37 | | brco 4884 |
. . . . . . . . 9
⊢ (〈x, y〉(R ∘
1st )z ↔ ∃a(〈x, y〉1st
a ∧
aRz)) |
38 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
39 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ y ∈
V |
40 | 38, 39 | opbr1st 5502 |
. . . . . . . . . . . 12
⊢ (〈x, y〉1st
a ↔ x = a) |
41 | | eqcom 2355 |
. . . . . . . . . . . 12
⊢ (x = a ↔
a = x) |
42 | 40, 41 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈x, y〉1st
a ↔ a = x) |
43 | 42 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((〈x, y〉1st
a ∧
aRz) ↔
(a = x
∧ aRz)) |
44 | 43 | exbii 1582 |
. . . . . . . . 9
⊢ (∃a(〈x, y〉1st
a ∧
aRz) ↔ ∃a(a = x ∧ aRz)) |
45 | 37, 44 | bitri 240 |
. . . . . . . 8
⊢ (〈x, y〉(R ∘
1st )z ↔ ∃a(a = x ∧ aRz)) |
46 | | breq1 4643 |
. . . . . . . . 9
⊢ (a = x →
(aRz ↔
xRz)) |
47 | 38, 46 | ceqsexv 2895 |
. . . . . . . 8
⊢ (∃a(a = x ∧ aRz) ↔
xRz) |
48 | 45, 47 | bitri 240 |
. . . . . . 7
⊢ (〈x, y〉(R ∘
1st )z ↔ xRz) |
49 | | brco 4884 |
. . . . . . . . 9
⊢ (〈x, y〉(S ∘
2nd )w ↔ ∃a(〈x, y〉2nd
a ∧
aSw)) |
50 | 38, 39 | opbr2nd 5503 |
. . . . . . . . . . . 12
⊢ (〈x, y〉2nd
a ↔ y = a) |
51 | | eqcom 2355 |
. . . . . . . . . . . 12
⊢ (y = a ↔
a = y) |
52 | 50, 51 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈x, y〉2nd
a ↔ a = y) |
53 | 52 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((〈x, y〉2nd
a ∧
aSw) ↔
(a = y
∧ aSw)) |
54 | 53 | exbii 1582 |
. . . . . . . . 9
⊢ (∃a(〈x, y〉2nd
a ∧
aSw) ↔ ∃a(a = y ∧ aSw)) |
55 | 49, 54 | bitri 240 |
. . . . . . . 8
⊢ (〈x, y〉(S ∘
2nd )w ↔ ∃a(a = y ∧ aSw)) |
56 | | breq1 4643 |
. . . . . . . . 9
⊢ (a = y →
(aSw ↔
ySw)) |
57 | 39, 56 | ceqsexv 2895 |
. . . . . . . 8
⊢ (∃a(a = y ∧ aSw) ↔
ySw) |
58 | 55, 57 | bitri 240 |
. . . . . . 7
⊢ (〈x, y〉(S ∘
2nd )w ↔ ySw) |
59 | 48, 58 | anbi12i 678 |
. . . . . 6
⊢ ((〈x, y〉(R ∘
1st )z ∧ 〈x, y〉(S ∘ 2nd )w) ↔ (xRz ∧ ySw)) |
60 | 36, 59 | bitri 240 |
. . . . 5
⊢ (〈x, y〉 PProd (R, S)〈z, w〉 ↔ (xRz ∧ ySw)) |
61 | 27, 32, 60 | vtocl2g 2919 |
. . . 4
⊢ ((C ∈ V ∧ D ∈ V) → (〈x, y〉 PProd (R, S)〈C, D〉 ↔ (xRC ∧ ySD))) |
62 | 16, 22, 61 | vtocl2g 2919 |
. . 3
⊢ ((A ∈ V ∧ B ∈ V) → ((C
∈ V ∧
D ∈ V)
→ (〈A, B〉 PProd (R, S)〈C, D〉 ↔
(ARC ∧ BSD)))) |
63 | 62 | imp 418 |
. 2
⊢ (((A ∈ V ∧ B ∈ V) ∧ (C ∈ V ∧ D ∈ V)) → (〈A, B〉 PProd (R, S)〈C, D〉 ↔ (ARC ∧ BSD))) |
64 | 5, 10, 63 | pm5.21nii 342 |
1
⊢ (〈A, B〉 PProd (R, S)〈C, D〉 ↔ (ARC ∧ BSD)) |