NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  qrpprod GIF version

Theorem qrpprod 5837
Description: A quadratic relationship over a parallel product. (Contributed by SF, 24-Feb-2015.)
Assertion
Ref Expression
qrpprod (A, B PProd (R, S)C, D ↔ (ARC BSD))

Proof of Theorem qrpprod
Dummy variables w a x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brex 4690 . . 3 (A, B PProd (R, S)C, D → (A, B V C, D V))
2 opexb 4604 . . . 4 (A, B V ↔ (A V B V))
3 opexb 4604 . . . 4 (C, D V ↔ (C V D V))
42, 3anbi12i 678 . . 3 ((A, B V C, D V) ↔ ((A V B V) (C V D V)))
51, 4sylib 188 . 2 (A, B PProd (R, S)C, D → ((A V B V) (C V D V)))
6 brex 4690 . . . 4 (ARC → (A V C V))
7 brex 4690 . . . 4 (BSD → (B V D V))
86, 7anim12i 549 . . 3 ((ARC BSD) → ((A V C V) (B V D V)))
9 an4 797 . . 3 (((A V B V) (C V D V)) ↔ ((A V C V) (B V D V)))
108, 9sylibr 203 . 2 ((ARC BSD) → ((A V B V) (C V D V)))
11 opeq1 4579 . . . . . . 7 (x = Ax, y = A, y)
1211breq1d 4650 . . . . . 6 (x = A → (x, y PProd (R, S)C, DA, y PProd (R, S)C, D))
13 breq1 4643 . . . . . . 7 (x = A → (xRCARC))
1413anbi1d 685 . . . . . 6 (x = A → ((xRC ySD) ↔ (ARC ySD)))
1512, 14bibi12d 312 . . . . 5 (x = A → ((x, y PProd (R, S)C, D ↔ (xRC ySD)) ↔ (A, y PProd (R, S)C, D ↔ (ARC ySD))))
1615imbi2d 307 . . . 4 (x = A → (((C V D V) → (x, y PProd (R, S)C, D ↔ (xRC ySD))) ↔ ((C V D V) → (A, y PProd (R, S)C, D ↔ (ARC ySD)))))
17 opeq2 4580 . . . . . . 7 (y = BA, y = A, B)
1817breq1d 4650 . . . . . 6 (y = B → (A, y PProd (R, S)C, DA, B PProd (R, S)C, D))
19 breq1 4643 . . . . . . 7 (y = B → (ySDBSD))
2019anbi2d 684 . . . . . 6 (y = B → ((ARC ySD) ↔ (ARC BSD)))
2118, 20bibi12d 312 . . . . 5 (y = B → ((A, y PProd (R, S)C, D ↔ (ARC ySD)) ↔ (A, B PProd (R, S)C, D ↔ (ARC BSD))))
2221imbi2d 307 . . . 4 (y = B → (((C V D V) → (A, y PProd (R, S)C, D ↔ (ARC ySD))) ↔ ((C V D V) → (A, B PProd (R, S)C, D ↔ (ARC BSD)))))
23 opeq1 4579 . . . . . . 7 (z = Cz, w = C, w)
2423breq2d 4652 . . . . . 6 (z = C → (x, y PProd (R, S)z, wx, y PProd (R, S)C, w))
25 breq2 4644 . . . . . . 7 (z = C → (xRzxRC))
2625anbi1d 685 . . . . . 6 (z = C → ((xRz ySw) ↔ (xRC ySw)))
2724, 26bibi12d 312 . . . . 5 (z = C → ((x, y PProd (R, S)z, w ↔ (xRz ySw)) ↔ (x, y PProd (R, S)C, w ↔ (xRC ySw))))
28 opeq2 4580 . . . . . . 7 (w = DC, w = C, D)
2928breq2d 4652 . . . . . 6 (w = D → (x, y PProd (R, S)C, wx, y PProd (R, S)C, D))
30 breq2 4644 . . . . . . 7 (w = D → (ySwySD))
3130anbi2d 684 . . . . . 6 (w = D → ((xRC ySw) ↔ (xRC ySD)))
3229, 31bibi12d 312 . . . . 5 (w = D → ((x, y PProd (R, S)C, w ↔ (xRC ySw)) ↔ (x, y PProd (R, S)C, D ↔ (xRC ySD))))
33 df-pprod 5739 . . . . . . . 8 PProd (R, S) = ((R 1st ) ⊗ (S 2nd ))
3433breqi 4646 . . . . . . 7 (x, y PProd (R, S)z, wx, y((R 1st ) ⊗ (S 2nd ))z, w)
35 trtxp 5782 . . . . . . 7 (x, y((R 1st ) ⊗ (S 2nd ))z, w ↔ (x, y(R 1st )z x, y(S 2nd )w))
3634, 35bitri 240 . . . . . 6 (x, y PProd (R, S)z, w ↔ (x, y(R 1st )z x, y(S 2nd )w))
37 brco 4884 . . . . . . . . 9 (x, y(R 1st )za(x, y1st a aRz))
38 vex 2863 . . . . . . . . . . . . 13 x V
39 vex 2863 . . . . . . . . . . . . 13 y V
4038, 39opbr1st 5502 . . . . . . . . . . . 12 (x, y1st ax = a)
41 eqcom 2355 . . . . . . . . . . . 12 (x = aa = x)
4240, 41bitri 240 . . . . . . . . . . 11 (x, y1st aa = x)
4342anbi1i 676 . . . . . . . . . 10 ((x, y1st a aRz) ↔ (a = x aRz))
4443exbii 1582 . . . . . . . . 9 (a(x, y1st a aRz) ↔ a(a = x aRz))
4537, 44bitri 240 . . . . . . . 8 (x, y(R 1st )za(a = x aRz))
46 breq1 4643 . . . . . . . . 9 (a = x → (aRzxRz))
4738, 46ceqsexv 2895 . . . . . . . 8 (a(a = x aRz) ↔ xRz)
4845, 47bitri 240 . . . . . . 7 (x, y(R 1st )zxRz)
49 brco 4884 . . . . . . . . 9 (x, y(S 2nd )wa(x, y2nd a aSw))
5038, 39opbr2nd 5503 . . . . . . . . . . . 12 (x, y2nd ay = a)
51 eqcom 2355 . . . . . . . . . . . 12 (y = aa = y)
5250, 51bitri 240 . . . . . . . . . . 11 (x, y2nd aa = y)
5352anbi1i 676 . . . . . . . . . 10 ((x, y2nd a aSw) ↔ (a = y aSw))
5453exbii 1582 . . . . . . . . 9 (a(x, y2nd a aSw) ↔ a(a = y aSw))
5549, 54bitri 240 . . . . . . . 8 (x, y(S 2nd )wa(a = y aSw))
56 breq1 4643 . . . . . . . . 9 (a = y → (aSwySw))
5739, 56ceqsexv 2895 . . . . . . . 8 (a(a = y aSw) ↔ ySw)
5855, 57bitri 240 . . . . . . 7 (x, y(S 2nd )wySw)
5948, 58anbi12i 678 . . . . . 6 ((x, y(R 1st )z x, y(S 2nd )w) ↔ (xRz ySw))
6036, 59bitri 240 . . . . 5 (x, y PProd (R, S)z, w ↔ (xRz ySw))
6127, 32, 60vtocl2g 2919 . . . 4 ((C V D V) → (x, y PProd (R, S)C, D ↔ (xRC ySD)))
6216, 22, 61vtocl2g 2919 . . 3 ((A V B V) → ((C V D V) → (A, B PProd (R, S)C, D ↔ (ARC BSD))))
6362imp 418 . 2 (((A V B V) (C V D V)) → (A, B PProd (R, S)C, D ↔ (ARC BSD)))
645, 10, 63pm5.21nii 342 1 (A, B PProd (R, S)C, D ↔ (ARC BSD))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cop 4562   class class class wbr 4640  1st c1st 4718   ccom 4722  2nd c2nd 4784  ctxp 5736   PProd cpprod 5738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-cnv 4786  df-2nd 4798  df-txp 5737  df-pprod 5739
This theorem is referenced by:  dmfrec  6317  fnfreclem2  6319  fnfreclem3  6320  frecsuc  6323
  Copyright terms: Public domain W3C validator