NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspc2v GIF version

Theorem rspc2v 2962
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
Hypotheses
Ref Expression
rspc2v.1 (x = A → (φχ))
rspc2v.2 (y = B → (χψ))
Assertion
Ref Expression
rspc2v ((A C B D) → (x C y D φψ))
Distinct variable groups:   x,y,A   y,B   x,C   x,D,y   χ,x   ψ,y
Allowed substitution hints:   φ(x,y)   ψ(x)   χ(y)   B(x)   C(y)

Proof of Theorem rspc2v
StepHypRef Expression
1 nfv 1619 . 2 xχ
2 nfv 1619 . 2 yψ
3 rspc2v.1 . 2 (x = A → (φχ))
4 rspc2v.2 . 2 (y = B → (χψ))
51, 2, 3, 4rspc2 2961 1 ((A C B D) → (x C y D φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862
This theorem is referenced by:  rspc2va  2963  rspc3v  2965  ncfinraise  4482  nnpweq  4524  isorel  5490  isotr  5496  fovcl  5589  caovcld  5623  caovcomg  5625  extd  5924  symd  5925  antid  5930  connexd  5932
  Copyright terms: Public domain W3C validator