Step | Hyp | Ref
| Expression |
1 | | extd.2 |
. . 3
⊢ (φ → X ∈ A) |
2 | | extd.3 |
. . 3
⊢ (φ → Y ∈ A) |
3 | 1, 2 | jca 518 |
. 2
⊢ (φ → (X ∈ A ∧ Y ∈ A)) |
4 | | extd.1 |
. . 3
⊢ (φ → R Ext A) |
5 | | brex 4690 |
. . . . 5
⊢ (R Ext A → (R
∈ V ∧
A ∈
V)) |
6 | | breq 4642 |
. . . . . . . . . 10
⊢ (r = R →
(zrx ↔
zRx)) |
7 | | breq 4642 |
. . . . . . . . . 10
⊢ (r = R →
(zry ↔
zRy)) |
8 | 6, 7 | bibi12d 312 |
. . . . . . . . 9
⊢ (r = R →
((zrx ↔
zry) ↔
(zRx ↔
zRy))) |
9 | 8 | ralbidv 2635 |
. . . . . . . 8
⊢ (r = R →
(∀z
∈ a
(zrx ↔
zry) ↔ ∀z ∈ a (zRx ↔ zRy))) |
10 | 9 | imbi1d 308 |
. . . . . . 7
⊢ (r = R →
((∀z
∈ a
(zrx ↔
zry) →
x = y)
↔ (∀z ∈ a (zRx ↔
zRy) →
x = y))) |
11 | 10 | 2ralbidv 2657 |
. . . . . 6
⊢ (r = R →
(∀x
∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y) ↔ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zRx ↔ zRy) → x =
y))) |
12 | | raleq 2808 |
. . . . . . . . 9
⊢ (a = A →
(∀z
∈ a
(zRx ↔
zRy) ↔ ∀z ∈ A (zRx ↔ zRy))) |
13 | 12 | imbi1d 308 |
. . . . . . . 8
⊢ (a = A →
((∀z
∈ a
(zRx ↔
zRy) →
x = y)
↔ (∀z ∈ A (zRx ↔
zRy) →
x = y))) |
14 | 13 | raleqbi1dv 2816 |
. . . . . . 7
⊢ (a = A →
(∀y
∈ a
(∀z
∈ a
(zRx ↔
zRy) →
x = y)
↔ ∀y ∈ A (∀z ∈ A (zRx ↔
zRy) →
x = y))) |
15 | 14 | raleqbi1dv 2816 |
. . . . . 6
⊢ (a = A →
(∀x
∈ a ∀y ∈ a (∀z ∈ a (zRx ↔ zRy) → x =
y) ↔ ∀x ∈ A ∀y ∈ A (∀z ∈ A (zRx ↔ zRy) → x =
y))) |
16 | | df-ext 5908 |
. . . . . 6
⊢ Ext = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y)} |
17 | 11, 15, 16 | brabg 4707 |
. . . . 5
⊢ ((R ∈ V ∧ A ∈ V) → (R
Ext A ↔
∀x
∈ A ∀y ∈ A (∀z ∈ A (zRx ↔ zRy) → x =
y))) |
18 | 5, 17 | syl 15 |
. . . 4
⊢ (R Ext A → (R
Ext A ↔
∀x
∈ A ∀y ∈ A (∀z ∈ A (zRx ↔ zRy) → x =
y))) |
19 | 18 | ibi 232 |
. . 3
⊢ (R Ext A → ∀x ∈ A ∀y ∈ A (∀z ∈ A (zRx ↔ zRy) → x =
y)) |
20 | 4, 19 | syl 15 |
. 2
⊢ (φ → ∀x ∈ A ∀y ∈ A (∀z ∈ A (zRx ↔ zRy) → x =
y)) |
21 | | extd.4 |
. . 3
⊢ ((φ ∧ z ∈ A) → (zRX ↔ zRY)) |
22 | 21 | ralrimiva 2698 |
. 2
⊢ (φ → ∀z ∈ A (zRX ↔ zRY)) |
23 | | breq2 4644 |
. . . . . 6
⊢ (x = X →
(zRx ↔
zRX)) |
24 | 23 | bibi1d 310 |
. . . . 5
⊢ (x = X →
((zRx ↔
zRy) ↔
(zRX ↔
zRy))) |
25 | 24 | ralbidv 2635 |
. . . 4
⊢ (x = X →
(∀z
∈ A
(zRx ↔
zRy) ↔ ∀z ∈ A (zRX ↔ zRy))) |
26 | | eqeq1 2359 |
. . . 4
⊢ (x = X →
(x = y
↔ X = y)) |
27 | 25, 26 | imbi12d 311 |
. . 3
⊢ (x = X →
((∀z
∈ A
(zRx ↔
zRy) →
x = y)
↔ (∀z ∈ A (zRX ↔
zRy) →
X = y))) |
28 | | breq2 4644 |
. . . . . 6
⊢ (y = Y →
(zRy ↔
zRY)) |
29 | 28 | bibi2d 309 |
. . . . 5
⊢ (y = Y →
((zRX ↔
zRy) ↔
(zRX ↔
zRY))) |
30 | 29 | ralbidv 2635 |
. . . 4
⊢ (y = Y →
(∀z
∈ A
(zRX ↔
zRy) ↔ ∀z ∈ A (zRX ↔ zRY))) |
31 | | eqeq2 2362 |
. . . 4
⊢ (y = Y →
(X = y
↔ X = Y)) |
32 | 30, 31 | imbi12d 311 |
. . 3
⊢ (y = Y →
((∀z
∈ A
(zRX ↔
zRy) →
X = y)
↔ (∀z ∈ A (zRX ↔
zRY) →
X = Y))) |
33 | 27, 32 | rspc2v 2962 |
. 2
⊢ ((X ∈ A ∧ Y ∈ A) → (∀x ∈ A ∀y ∈ A (∀z ∈ A (zRx ↔ zRy) → x =
y) → (∀z ∈ A (zRX ↔ zRY) → X =
Y))) |
34 | 3, 20, 22, 33 | syl3c 57 |
1
⊢ (φ → X = Y) |