| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbcex2 | GIF version | ||
| Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| Ref | Expression |
|---|---|
| sbcex2 | ⊢ ([̣A / y]̣∃xφ ↔ ∃x[̣A / y]̣φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3056 | . 2 ⊢ ([̣A / y]̣∃xφ → A ∈ V) | |
| 2 | sbcex 3056 | . . 3 ⊢ ([̣A / y]̣φ → A ∈ V) | |
| 3 | 2 | exlimiv 1634 | . 2 ⊢ (∃x[̣A / y]̣φ → A ∈ V) |
| 4 | dfsbcq2 3050 | . . 3 ⊢ (z = A → ([z / y]∃xφ ↔ [̣A / y]̣∃xφ)) | |
| 5 | dfsbcq2 3050 | . . . 4 ⊢ (z = A → ([z / y]φ ↔ [̣A / y]̣φ)) | |
| 6 | 5 | exbidv 1626 | . . 3 ⊢ (z = A → (∃x[z / y]φ ↔ ∃x[̣A / y]̣φ)) |
| 7 | sbex 2128 | . . 3 ⊢ ([z / y]∃xφ ↔ ∃x[z / y]φ) | |
| 8 | 4, 6, 7 | vtoclbg 2916 | . 2 ⊢ (A ∈ V → ([̣A / y]̣∃xφ ↔ ∃x[̣A / y]̣φ)) |
| 9 | 1, 3, 8 | pm5.21nii 342 | 1 ⊢ ([̣A / y]̣∃xφ ↔ ∃x[̣A / y]̣φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∃wex 1541 = wceq 1642 [wsb 1648 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |