New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcexg | GIF version |
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
Ref | Expression |
---|---|
sbcexg | ⊢ (A ∈ V → ([̣A / y]̣∃xφ ↔ ∃x[̣A / y]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . 2 ⊢ (z = A → ([z / y]∃xφ ↔ [̣A / y]̣∃xφ)) | |
2 | dfsbcq2 3050 | . . 3 ⊢ (z = A → ([z / y]φ ↔ [̣A / y]̣φ)) | |
3 | 2 | exbidv 1626 | . 2 ⊢ (z = A → (∃x[z / y]φ ↔ ∃x[̣A / y]̣φ)) |
4 | sbex 2128 | . 2 ⊢ ([z / y]∃xφ ↔ ∃x[z / y]φ) | |
5 | 1, 3, 4 | vtoclbg 2916 | 1 ⊢ (A ∈ V → ([̣A / y]̣∃xφ ↔ ∃x[̣A / y]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 = wceq 1642 [wsb 1648 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: sbcabel 3124 csbunig 3900 csbxpg 4814 csbrng 4967 |
Copyright terms: Public domain | W3C validator |