| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sopc | GIF version | ||
| Description: Linear ordering as partial, connected relationship. (Contributed by SF, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| sopc | ⊢ (R Or A ↔ (R Po A ∧ R Connex A)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-strict 5905 | . . 3 ⊢ Or = ( Po ∩ Connex ) | |
| 2 | 1 | breqi 4646 | . 2 ⊢ (R Or A ↔ R( Po ∩ Connex )A) |
| 3 | brin 4694 | . 2 ⊢ (R( Po ∩ Connex )A ↔ (R Po A ∧ R Connex A)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (R Or A ↔ (R Po A ∧ R Connex A)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∩ cin 3209 class class class wbr 4640 Po cpartial 5892 Connex cconnex 5893 Or cstrict 5894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-br 4641 df-strict 5905 |
| This theorem is referenced by: sod 5938 weds 5939 so0 5942 nchoicelem8 6297 nchoicelem19 6308 |
| Copyright terms: Public domain | W3C validator |