New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > breqi | GIF version |
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
breqi.1 | ⊢ R = S |
Ref | Expression |
---|---|
breqi | ⊢ (ARB ↔ ASB) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqi.1 | . 2 ⊢ R = S | |
2 | breq 4642 | . 2 ⊢ (R = S → (ARB ↔ ASB)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (ARB ↔ ASB) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-br 4641 |
This theorem is referenced by: brres 4950 trtxp 5782 brtxp 5784 brimage 5794 qrpprod 5837 brpprod 5840 fnfullfunlem1 5857 ersymtr 5933 porta 5934 sopc 5935 weds 5939 brltc 6115 nchoicelem8 6297 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |