NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  qsss GIF version

Theorem qsss 5987
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (φR Er V)
qsss.2 (φ → dom R = A)
qsss.3 (φR V)
Assertion
Ref Expression
qsss (φ → (A / R) A)

Proof of Theorem qsss
StepHypRef Expression
1 qsss.1 . . . 4 (φR Er V)
2 qsss.2 . . . 4 (φ → dom R = A)
3 qsss.3 . . . 4 (φR V)
41, 2, 3uniqs2 5986 . . 3 (φ(A / R) = A)
5 eqimss 3324 . . 3 ((A / R) = A(A / R) A)
64, 5syl 15 . 2 (φ(A / R) A)
7 sspwuni 4052 . 2 ((A / R) A(A / R) A)
86, 7sylibr 203 1 (φ → (A / R) A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  Vcvv 2860   wss 3258  cpw 3723  cuni 3892   class class class wbr 4640  dom cdm 4773   Er cer 5899   / cqs 5947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-ima 4728  df-cnv 4786  df-rn 4787  df-dm 4788  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator