![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ssetpov | GIF version |
Description: The subset relationship partially orders the universe. (Contributed by SF, 12-Mar-2015.) |
Ref | Expression |
---|---|
ssetpov | ⊢ S Po V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssetex 4744 | . . . 4 ⊢ S ∈ V | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → S ∈ V) |
3 | vvex 4109 | . . . 4 ⊢ V ∈ V | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → V ∈ V) |
5 | ssid 3290 | . . . . 5 ⊢ x ⊆ x | |
6 | vex 2862 | . . . . . 6 ⊢ x ∈ V | |
7 | 6, 6 | brsset 4758 | . . . . 5 ⊢ (x S x ↔ x ⊆ x) |
8 | 5, 7 | mpbir 200 | . . . 4 ⊢ x S x |
9 | 8 | a1i 10 | . . 3 ⊢ (( ⊤ ∧ x ∈ V) → x S x) |
10 | sstr 3280 | . . . . 5 ⊢ ((x ⊆ y ∧ y ⊆ z) → x ⊆ z) | |
11 | vex 2862 | . . . . . . 7 ⊢ y ∈ V | |
12 | 6, 11 | brsset 4758 | . . . . . 6 ⊢ (x S y ↔ x ⊆ y) |
13 | vex 2862 | . . . . . . 7 ⊢ z ∈ V | |
14 | 11, 13 | brsset 4758 | . . . . . 6 ⊢ (y S z ↔ y ⊆ z) |
15 | 12, 14 | anbi12i 678 | . . . . 5 ⊢ ((x S y ∧ y S z) ↔ (x ⊆ y ∧ y ⊆ z)) |
16 | 6, 13 | brsset 4758 | . . . . 5 ⊢ (x S z ↔ x ⊆ z) |
17 | 10, 15, 16 | 3imtr4i 257 | . . . 4 ⊢ ((x S y ∧ y S z) → x S z) |
18 | 17 | 3ad2ant3 978 | . . 3 ⊢ (( ⊤ ∧ (x ∈ V ∧ y ∈ V ∧ z ∈ V) ∧ (x S y ∧ y S z)) → x S z) |
19 | eqss 3287 | . . . . . 6 ⊢ (x = y ↔ (x ⊆ y ∧ y ⊆ x)) | |
20 | 11, 6 | brsset 4758 | . . . . . . 7 ⊢ (y S x ↔ y ⊆ x) |
21 | 12, 20 | anbi12i 678 | . . . . . 6 ⊢ ((x S y ∧ y S x) ↔ (x ⊆ y ∧ y ⊆ x)) |
22 | 19, 21 | bitr4i 243 | . . . . 5 ⊢ (x = y ↔ (x S y ∧ y S x)) |
23 | 22 | biimpri 197 | . . . 4 ⊢ ((x S y ∧ y S x) → x = y) |
24 | 23 | 3ad2ant3 978 | . . 3 ⊢ (( ⊤ ∧ (x ∈ V ∧ y ∈ V) ∧ (x S y ∧ y S x)) → x = y) |
25 | 2, 4, 9, 18, 24 | pod 5936 | . 2 ⊢ ( ⊤ → S Po V) |
26 | 25 | trud 1323 | 1 ⊢ S Po V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∧ w3a 934 ⊤ wtru 1316 ∈ wcel 1710 Vcvv 2859 ⊆ wss 3257 class class class wbr 4639 S csset 4719 Po cpartial 5891 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-sset 4725 df-trans 5899 df-ref 5900 df-antisym 5901 df-partial 5902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |