![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sspw1 | GIF version |
Description: A condition for being a subclass of a unit power class. Corollary 2 of theorem IX.6.14 of [Rosser] p. 255. (Contributed by SF, 3-Feb-2015.) |
Ref | Expression |
---|---|
sspw1.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
sspw1 | ⊢ (A ⊆ ℘1B ↔ ∃x(x ⊆ B ∧ A = ℘1x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 3912 | . . . 4 ⊢ (A ⊆ ℘1B → ∪A ⊆ ∪℘1B) | |
2 | unipw1 4325 | . . . 4 ⊢ ∪℘1B = B | |
3 | 1, 2 | syl6sseq 3317 | . . 3 ⊢ (A ⊆ ℘1B → ∪A ⊆ B) |
4 | pw1ss1c 4158 | . . . . 5 ⊢ ℘1B ⊆ 1c | |
5 | sstr 3280 | . . . . 5 ⊢ ((A ⊆ ℘1B ∧ ℘1B ⊆ 1c) → A ⊆ 1c) | |
6 | 4, 5 | mpan2 652 | . . . 4 ⊢ (A ⊆ ℘1B → A ⊆ 1c) |
7 | eqpw1uni 4330 | . . . 4 ⊢ (A ⊆ 1c → A = ℘1∪A) | |
8 | 6, 7 | syl 15 | . . 3 ⊢ (A ⊆ ℘1B → A = ℘1∪A) |
9 | sspw1.1 | . . . . 5 ⊢ A ∈ V | |
10 | 9 | uniex 4317 | . . . 4 ⊢ ∪A ∈ V |
11 | sseq1 3292 | . . . . 5 ⊢ (x = ∪A → (x ⊆ B ↔ ∪A ⊆ B)) | |
12 | pw1eq 4143 | . . . . . 6 ⊢ (x = ∪A → ℘1x = ℘1∪A) | |
13 | 12 | eqeq2d 2364 | . . . . 5 ⊢ (x = ∪A → (A = ℘1x ↔ A = ℘1∪A)) |
14 | 11, 13 | anbi12d 691 | . . . 4 ⊢ (x = ∪A → ((x ⊆ B ∧ A = ℘1x) ↔ (∪A ⊆ B ∧ A = ℘1∪A))) |
15 | 10, 14 | spcev 2946 | . . 3 ⊢ ((∪A ⊆ B ∧ A = ℘1∪A) → ∃x(x ⊆ B ∧ A = ℘1x)) |
16 | 3, 8, 15 | syl2anc 642 | . 2 ⊢ (A ⊆ ℘1B → ∃x(x ⊆ B ∧ A = ℘1x)) |
17 | pw1ss 4169 | . . . . 5 ⊢ (x ⊆ B → ℘1x ⊆ ℘1B) | |
18 | sseq1 3292 | . . . . 5 ⊢ (A = ℘1x → (A ⊆ ℘1B ↔ ℘1x ⊆ ℘1B)) | |
19 | 17, 18 | syl5ibr 212 | . . . 4 ⊢ (A = ℘1x → (x ⊆ B → A ⊆ ℘1B)) |
20 | 19 | impcom 419 | . . 3 ⊢ ((x ⊆ B ∧ A = ℘1x) → A ⊆ ℘1B) |
21 | 20 | exlimiv 1634 | . 2 ⊢ (∃x(x ⊆ B ∧ A = ℘1x) → A ⊆ ℘1B) |
22 | 16, 21 | impbii 180 | 1 ⊢ (A ⊆ ℘1B ↔ ∃x(x ⊆ B ∧ A = ℘1x)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ⊆ wss 3257 ∪cuni 3891 1cc1c 4134 ℘1cpw1 4135 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-imak 4189 df-p6 4191 df-sik 4192 df-ssetk 4193 |
This theorem is referenced by: vfinspsslem1 4550 pw1fnf1o 5855 enpw1pw 6075 ce0addcnnul 6179 |
Copyright terms: Public domain | W3C validator |