New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sspw1 | GIF version |
Description: A condition for being a subclass of a unit power class. Corollary 2 of theorem IX.6.14 of [Rosser] p. 255. (Contributed by SF, 3-Feb-2015.) |
Ref | Expression |
---|---|
sspw1.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
sspw1 | ⊢ (A ⊆ ℘1B ↔ ∃x(x ⊆ B ∧ A = ℘1x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 3913 | . . . 4 ⊢ (A ⊆ ℘1B → ∪A ⊆ ∪℘1B) | |
2 | unipw1 4326 | . . . 4 ⊢ ∪℘1B = B | |
3 | 1, 2 | syl6sseq 3318 | . . 3 ⊢ (A ⊆ ℘1B → ∪A ⊆ B) |
4 | pw1ss1c 4159 | . . . . 5 ⊢ ℘1B ⊆ 1c | |
5 | sstr 3281 | . . . . 5 ⊢ ((A ⊆ ℘1B ∧ ℘1B ⊆ 1c) → A ⊆ 1c) | |
6 | 4, 5 | mpan2 652 | . . . 4 ⊢ (A ⊆ ℘1B → A ⊆ 1c) |
7 | eqpw1uni 4331 | . . . 4 ⊢ (A ⊆ 1c → A = ℘1∪A) | |
8 | 6, 7 | syl 15 | . . 3 ⊢ (A ⊆ ℘1B → A = ℘1∪A) |
9 | sspw1.1 | . . . . 5 ⊢ A ∈ V | |
10 | 9 | uniex 4318 | . . . 4 ⊢ ∪A ∈ V |
11 | sseq1 3293 | . . . . 5 ⊢ (x = ∪A → (x ⊆ B ↔ ∪A ⊆ B)) | |
12 | pw1eq 4144 | . . . . . 6 ⊢ (x = ∪A → ℘1x = ℘1∪A) | |
13 | 12 | eqeq2d 2364 | . . . . 5 ⊢ (x = ∪A → (A = ℘1x ↔ A = ℘1∪A)) |
14 | 11, 13 | anbi12d 691 | . . . 4 ⊢ (x = ∪A → ((x ⊆ B ∧ A = ℘1x) ↔ (∪A ⊆ B ∧ A = ℘1∪A))) |
15 | 10, 14 | spcev 2947 | . . 3 ⊢ ((∪A ⊆ B ∧ A = ℘1∪A) → ∃x(x ⊆ B ∧ A = ℘1x)) |
16 | 3, 8, 15 | syl2anc 642 | . 2 ⊢ (A ⊆ ℘1B → ∃x(x ⊆ B ∧ A = ℘1x)) |
17 | pw1ss 4170 | . . . . 5 ⊢ (x ⊆ B → ℘1x ⊆ ℘1B) | |
18 | sseq1 3293 | . . . . 5 ⊢ (A = ℘1x → (A ⊆ ℘1B ↔ ℘1x ⊆ ℘1B)) | |
19 | 17, 18 | syl5ibr 212 | . . . 4 ⊢ (A = ℘1x → (x ⊆ B → A ⊆ ℘1B)) |
20 | 19 | impcom 419 | . . 3 ⊢ ((x ⊆ B ∧ A = ℘1x) → A ⊆ ℘1B) |
21 | 20 | exlimiv 1634 | . 2 ⊢ (∃x(x ⊆ B ∧ A = ℘1x) → A ⊆ ℘1B) |
22 | 16, 21 | impbii 180 | 1 ⊢ (A ⊆ ℘1B ↔ ∃x(x ⊆ B ∧ A = ℘1x)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 ∪cuni 3892 1cc1c 4135 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 |
This theorem is referenced by: vfinspsslem1 4551 pw1fnf1o 5856 enpw1pw 6076 ce0addcnnul 6180 |
Copyright terms: Public domain | W3C validator |