| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ssunsn | GIF version | ||
| Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
| Ref | Expression |
|---|---|
| ssunsn | ⊢ ((B ⊆ A ∧ A ⊆ (B ∪ {C})) ↔ (A = B ∨ A = (B ∪ {C}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssunsn2 3866 | . 2 ⊢ ((B ⊆ A ∧ A ⊆ (B ∪ {C})) ↔ ((B ⊆ A ∧ A ⊆ B) ∨ ((B ∪ {C}) ⊆ A ∧ A ⊆ (B ∪ {C})))) | |
| 2 | ancom 437 | . . . 4 ⊢ ((B ⊆ A ∧ A ⊆ B) ↔ (A ⊆ B ∧ B ⊆ A)) | |
| 3 | eqss 3288 | . . . 4 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
| 4 | 2, 3 | bitr4i 243 | . . 3 ⊢ ((B ⊆ A ∧ A ⊆ B) ↔ A = B) |
| 5 | ancom 437 | . . . 4 ⊢ (((B ∪ {C}) ⊆ A ∧ A ⊆ (B ∪ {C})) ↔ (A ⊆ (B ∪ {C}) ∧ (B ∪ {C}) ⊆ A)) | |
| 6 | eqss 3288 | . . . 4 ⊢ (A = (B ∪ {C}) ↔ (A ⊆ (B ∪ {C}) ∧ (B ∪ {C}) ⊆ A)) | |
| 7 | 5, 6 | bitr4i 243 | . . 3 ⊢ (((B ∪ {C}) ⊆ A ∧ A ⊆ (B ∪ {C})) ↔ A = (B ∪ {C})) |
| 8 | 4, 7 | orbi12i 507 | . 2 ⊢ (((B ⊆ A ∧ A ⊆ B) ∨ ((B ∪ {C}) ⊆ A ∧ A ⊆ (B ∪ {C}))) ↔ (A = B ∨ A = (B ∪ {C}))) |
| 9 | 1, 8 | bitri 240 | 1 ⊢ ((B ⊆ A ∧ A ⊆ (B ∪ {C})) ↔ (A = B ∨ A = (B ∪ {C}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 = wceq 1642 ∪ cun 3208 ⊆ wss 3258 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
| This theorem is referenced by: ssunpr 3869 |
| Copyright terms: Public domain | W3C validator |