Proof of Theorem ssunpr
Step | Hyp | Ref
| Expression |
1 | | df-pr 3743 |
. . . . . 6
⊢ {C, D} =
({C} ∪ {D}) |
2 | 1 | uneq2i 3416 |
. . . . 5
⊢ (B ∪ {C,
D}) = (B ∪ ({C}
∪ {D})) |
3 | | unass 3421 |
. . . . 5
⊢ ((B ∪ {C})
∪ {D}) = (B ∪ ({C}
∪ {D})) |
4 | 2, 3 | eqtr4i 2376 |
. . . 4
⊢ (B ∪ {C,
D}) = ((B ∪ {C})
∪ {D}) |
5 | 4 | sseq2i 3297 |
. . 3
⊢ (A ⊆ (B ∪ {C,
D}) ↔ A ⊆ ((B ∪ {C})
∪ {D})) |
6 | 5 | anbi2i 675 |
. 2
⊢ ((B ⊆ A ∧ A ⊆ (B ∪ {C,
D})) ↔ (B ⊆ A ∧ A ⊆ ((B ∪ {C})
∪ {D}))) |
7 | | ssunsn2 3866 |
. 2
⊢ ((B ⊆ A ∧ A ⊆ ((B ∪ {C})
∪ {D})) ↔ ((B ⊆ A ∧ A ⊆ (B ∪ {C}))
∨ ((B
∪ {D}) ⊆ A ∧ A ⊆ ((B ∪
{C}) ∪ {D})))) |
8 | | ssunsn 3867 |
. . 3
⊢ ((B ⊆ A ∧ A ⊆ (B ∪ {C}))
↔ (A = B ∨ A = (B ∪
{C}))) |
9 | | un23 3423 |
. . . . . 6
⊢ ((B ∪ {C})
∪ {D}) = ((B ∪ {D})
∪ {C}) |
10 | 9 | sseq2i 3297 |
. . . . 5
⊢ (A ⊆ ((B ∪ {C})
∪ {D}) ↔ A ⊆ ((B ∪ {D})
∪ {C})) |
11 | 10 | anbi2i 675 |
. . . 4
⊢ (((B ∪ {D})
⊆ A
∧ A ⊆ ((B ∪
{C}) ∪ {D})) ↔ ((B
∪ {D}) ⊆ A ∧ A ⊆ ((B ∪
{D}) ∪ {C}))) |
12 | | ssunsn 3867 |
. . . 4
⊢ (((B ∪ {D})
⊆ A
∧ A ⊆ ((B ∪
{D}) ∪ {C})) ↔ (A =
(B ∪ {D}) ∨ A = ((B ∪
{D}) ∪ {C}))) |
13 | 4, 9 | eqtr2i 2374 |
. . . . . 6
⊢ ((B ∪ {D})
∪ {C}) = (B ∪ {C,
D}) |
14 | 13 | eqeq2i 2363 |
. . . . 5
⊢ (A = ((B ∪
{D}) ∪ {C}) ↔ A =
(B ∪ {C, D})) |
15 | 14 | orbi2i 505 |
. . . 4
⊢ ((A = (B ∪
{D}) ∨
A = ((B
∪ {D}) ∪ {C})) ↔ (A =
(B ∪ {D}) ∨ A = (B ∪
{C, D}))) |
16 | 11, 12, 15 | 3bitri 262 |
. . 3
⊢ (((B ∪ {D})
⊆ A
∧ A ⊆ ((B ∪
{C}) ∪ {D})) ↔ (A =
(B ∪ {D}) ∨ A = (B ∪
{C, D}))) |
17 | 8, 16 | orbi12i 507 |
. 2
⊢ (((B ⊆ A ∧ A ⊆ (B ∪ {C}))
∨ ((B
∪ {D}) ⊆ A ∧ A ⊆ ((B ∪
{C}) ∪ {D}))) ↔ ((A
= B ∨
A = (B
∪ {C}))
∨ (A = (B ∪ {D})
∨ A =
(B ∪ {C, D})))) |
18 | 6, 7, 17 | 3bitri 262 |
1
⊢ ((B ⊆ A ∧ A ⊆ (B ∪ {C,
D})) ↔ ((A = B ∨ A = (B ∪ {C}))
∨ (A =
(B ∪ {D}) ∨ A = (B ∪
{C, D})))) |