NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uni0c GIF version

Theorem uni0c 3918
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c (A = x A x = )
Distinct variable group:   x,A

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 3917 . 2 (A = A {})
2 dfss3 3264 . 2 (A {} ↔ x A x {})
3 elsn 3749 . . 3 (x {} ↔ x = )
43ralbii 2639 . 2 (x A x {} ↔ x A x = )
51, 2, 43bitri 262 1 (A = x A x = )
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  wral 2615   wss 3258  c0 3551  {csn 3738  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-uni 3893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator