NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disjsn GIF version

Theorem disjsn 3787
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn ((A ∩ {B}) = ↔ ¬ B A)

Proof of Theorem disjsn
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 disj1 3594 . 2 ((A ∩ {B}) = x(x A → ¬ x {B}))
2 con2b 324 . . . 4 ((x A → ¬ x {B}) ↔ (x {B} → ¬ x A))
3 elsn 3749 . . . . 5 (x {B} ↔ x = B)
43imbi1i 315 . . . 4 ((x {B} → ¬ x A) ↔ (x = B → ¬ x A))
5 imnan 411 . . . 4 ((x = B → ¬ x A) ↔ ¬ (x = B x A))
62, 4, 53bitri 262 . . 3 ((x A → ¬ x {B}) ↔ ¬ (x = B x A))
76albii 1566 . 2 (x(x A → ¬ x {B}) ↔ x ¬ (x = B x A))
8 alnex 1543 . . 3 (x ¬ (x = B x A) ↔ ¬ x(x = B x A))
9 df-clel 2349 . . 3 (B Ax(x = B x A))
108, 9xchbinxr 302 . 2 (x ¬ (x = B x A) ↔ ¬ B A)
111, 7, 103bitri 262 1 ((A ∩ {B}) = ↔ ¬ B A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  cin 3209  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552  df-sn 3742
This theorem is referenced by:  disjsn2  3788  ssunsn2  3866  dfiota4  4373  elsuc  4414  nndisjeq  4430  vfinncsp  4555  phiall  4619  ndmima  5026  fnunsn  5191  ressnop0  5437  1p1e2c  6156  2p1e3c  6157  nchoicelem7  6296  nchoicelem14  6303
  Copyright terms: Public domain W3C validator