New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disjsn | GIF version |
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
Ref | Expression |
---|---|
disjsn | ⊢ ((A ∩ {B}) = ∅ ↔ ¬ B ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj1 3594 | . 2 ⊢ ((A ∩ {B}) = ∅ ↔ ∀x(x ∈ A → ¬ x ∈ {B})) | |
2 | con2b 324 | . . . 4 ⊢ ((x ∈ A → ¬ x ∈ {B}) ↔ (x ∈ {B} → ¬ x ∈ A)) | |
3 | elsn 3749 | . . . . 5 ⊢ (x ∈ {B} ↔ x = B) | |
4 | 3 | imbi1i 315 | . . . 4 ⊢ ((x ∈ {B} → ¬ x ∈ A) ↔ (x = B → ¬ x ∈ A)) |
5 | imnan 411 | . . . 4 ⊢ ((x = B → ¬ x ∈ A) ↔ ¬ (x = B ∧ x ∈ A)) | |
6 | 2, 4, 5 | 3bitri 262 | . . 3 ⊢ ((x ∈ A → ¬ x ∈ {B}) ↔ ¬ (x = B ∧ x ∈ A)) |
7 | 6 | albii 1566 | . 2 ⊢ (∀x(x ∈ A → ¬ x ∈ {B}) ↔ ∀x ¬ (x = B ∧ x ∈ A)) |
8 | alnex 1543 | . . 3 ⊢ (∀x ¬ (x = B ∧ x ∈ A) ↔ ¬ ∃x(x = B ∧ x ∈ A)) | |
9 | df-clel 2349 | . . 3 ⊢ (B ∈ A ↔ ∃x(x = B ∧ x ∈ A)) | |
10 | 8, 9 | xchbinxr 302 | . 2 ⊢ (∀x ¬ (x = B ∧ x ∈ A) ↔ ¬ B ∈ A) |
11 | 1, 7, 10 | 3bitri 262 | 1 ⊢ ((A ∩ {B}) = ∅ ↔ ¬ B ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 ∅c0 3551 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-sn 3742 |
This theorem is referenced by: disjsn2 3788 ssunsn2 3866 dfiota4 4373 elsuc 4414 nndisjeq 4430 vfinncsp 4555 phiall 4619 ndmima 5026 fnunsn 5191 ressnop0 5437 1p1e2c 6156 2p1e3c 6157 nchoicelem7 6296 nchoicelem14 6303 |
Copyright terms: Public domain | W3C validator |