Proof of Theorem mlaconjo
Step | Hyp | Ref
| Expression |
1 | | dfb 94 |
. . . 4
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
2 | 1 | bile 142 |
. . 3
(a ≡ b) ≤ ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
3 | | mlaconjolem 885 |
. . 3
((a ≡ c) ∪ (b
≡ c)) ≤ ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
4 | 2, 3 | le2an 169 |
. 2
((a ≡ b) ∩ ((a
≡ c) ∪ (b ≡ c)))
≤ (((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ )))) |
5 | | lea 160 |
. . . . 5
(a ∩ b) ≤ a |
6 | | lea 160 |
. . . . 5
(c ∩ (a ∪ b)) ≤
c |
7 | 5, 6 | le2an 169 |
. . . 4
((a ∩ b) ∩ (c
∩ (a ∪ b))) ≤ (a
∩ c) |
8 | | lea 160 |
. . . . 5
(a⊥ ∩ b⊥ ) ≤ a⊥ |
9 | | lea 160 |
. . . . 5
(c⊥ ∩ (a⊥ ∪ b⊥ )) ≤ c⊥ |
10 | 8, 9 | le2an 169 |
. . . 4
((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))) ≤ (a⊥ ∩ c⊥ ) |
11 | 7, 10 | le2or 168 |
. . 3
(((a ∩ b) ∩ (c
∩ (a ∪ b))) ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) ≤ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )) |
12 | | leao1 162 |
. . . . . . . 8
(a ∩ b) ≤ (a ∪
b) |
13 | | oran 87 |
. . . . . . . 8
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
14 | 12, 13 | lbtr 139 |
. . . . . . 7
(a ∩ b) ≤ (a⊥ ∩ b⊥
)⊥ |
15 | 14 | lecom 180 |
. . . . . 6
(a ∩ b) C (a⊥ ∩ b⊥
)⊥ |
16 | 15 | comcom7 460 |
. . . . 5
(a ∩ b) C (a⊥ ∩ b⊥ ) |
17 | | leor 159 |
. . . . . . . 8
(a ∩ b) ≤ (c ∪
(a ∩ b)) |
18 | | df-a 40 |
. . . . . . . . . 10
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
19 | 18 | lor 70 |
. . . . . . . . 9
(c ∪ (a ∩ b)) =
(c ∪ (a⊥ ∪ b⊥ )⊥
) |
20 | | oran1 91 |
. . . . . . . . 9
(c ∪ (a⊥ ∪ b⊥ )⊥ ) =
(c⊥ ∩ (a⊥ ∪ b⊥
))⊥ |
21 | 19, 20 | ax-r2 36 |
. . . . . . . 8
(c ∪ (a ∩ b)) =
(c⊥ ∩ (a⊥ ∪ b⊥
))⊥ |
22 | 17, 21 | lbtr 139 |
. . . . . . 7
(a ∩ b) ≤ (c⊥ ∩ (a⊥ ∪ b⊥
))⊥ |
23 | 22 | lecom 180 |
. . . . . 6
(a ∩ b) C (c⊥ ∩ (a⊥ ∪ b⊥
))⊥ |
24 | 23 | comcom7 460 |
. . . . 5
(a ∩ b) C (c⊥ ∩ (a⊥ ∪ b⊥ )) |
25 | | lear 161 |
. . . . . . . 8
(c ∩ (a ∪ b)) ≤
(a ∪ b) |
26 | 25, 13 | lbtr 139 |
. . . . . . 7
(c ∩ (a ∪ b)) ≤
(a⊥ ∩ b⊥
)⊥ |
27 | 26 | lecom 180 |
. . . . . 6
(c ∩ (a ∪ b)) C
(a⊥ ∩ b⊥
)⊥ |
28 | 27 | comcom7 460 |
. . . . 5
(c ∩ (a ∪ b)) C
(a⊥ ∩ b⊥ ) |
29 | | leao1 162 |
. . . . . . . 8
(c ∩ (a ∪ b)) ≤
(c ∪ (a⊥ ∪ b⊥ )⊥
) |
30 | 29, 20 | lbtr 139 |
. . . . . . 7
(c ∩ (a ∪ b)) ≤
(c⊥ ∩ (a⊥ ∪ b⊥
))⊥ |
31 | 30 | lecom 180 |
. . . . . 6
(c ∩ (a ∪ b)) C
(c⊥ ∩ (a⊥ ∪ b⊥
))⊥ |
32 | 31 | comcom7 460 |
. . . . 5
(c ∩ (a ∪ b)) C
(c⊥ ∩ (a⊥ ∪ b⊥ )) |
33 | 16, 24, 28, 32 | mh 879 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = ((((a ∩ b) ∩
(c ∩ (a ∪ b)))
∪ ((a ∩ b) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) ∪ (((a⊥ ∩ b⊥ ) ∩ (c ∩ (a ∪
b))) ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))))) |
34 | | an12 81 |
. . . . . . . 8
((a ∩ b) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))) = (c⊥ ∩ ((a ∩ b) ∩
(a⊥ ∪ b⊥ ))) |
35 | | oran3 93 |
. . . . . . . . . . 11
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
36 | 35 | lan 77 |
. . . . . . . . . 10
((a ∩ b) ∩ (a⊥ ∪ b⊥ )) = ((a ∩ b) ∩
(a ∩ b)⊥ ) |
37 | | dff 101 |
. . . . . . . . . . 11
0 = ((a ∩ b) ∩ (a
∩ b)⊥
) |
38 | 37 | ax-r1 35 |
. . . . . . . . . 10
((a ∩ b) ∩ (a
∩ b)⊥ ) =
0 |
39 | 36, 38 | ax-r2 36 |
. . . . . . . . 9
((a ∩ b) ∩ (a⊥ ∪ b⊥ )) = 0 |
40 | 39 | lan 77 |
. . . . . . . 8
(c⊥ ∩
((a ∩ b) ∩ (a⊥ ∪ b⊥ ))) = (c⊥ ∩ 0) |
41 | | an0 108 |
. . . . . . . 8
(c⊥ ∩ 0) =
0 |
42 | 34, 40, 41 | 3tr 65 |
. . . . . . 7
((a ∩ b) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))) = 0 |
43 | 42 | lor 70 |
. . . . . 6
(((a ∩ b) ∩ (c
∩ (a ∪ b))) ∪ ((a
∩ b) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = (((a ∩ b) ∩
(c ∩ (a ∪ b)))
∪ 0) |
44 | | or0 102 |
. . . . . 6
(((a ∩ b) ∩ (c
∩ (a ∪ b))) ∪ 0) = ((a ∩ b) ∩
(c ∩ (a ∪ b))) |
45 | 43, 44 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∩ (c
∩ (a ∪ b))) ∪ ((a
∩ b) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = ((a ∩ b) ∩
(c ∩ (a ∪ b))) |
46 | | an12 81 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (c ∩ (a ∪
b))) = (c ∩ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) |
47 | 13 | lan 77 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
48 | | dff 101 |
. . . . . . . . . . 11
0 = ((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
49 | 48 | ax-r1 35 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
0 |
50 | 47, 49 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
0 |
51 | 50 | lan 77 |
. . . . . . . 8
(c ∩ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) =
(c ∩ 0) |
52 | | an0 108 |
. . . . . . . 8
(c ∩ 0) = 0 |
53 | 46, 51, 52 | 3tr 65 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (c ∩ (a ∪
b))) = 0 |
54 | 53 | ax-r5 38 |
. . . . . 6
(((a⊥ ∩
b⊥ ) ∩ (c ∩ (a ∪
b))) ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = (0 ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) |
55 | | or0r 103 |
. . . . . 6
(0 ∪ ((a⊥ ∩
b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
56 | 54, 55 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b⊥ ) ∩ (c ∩ (a ∪
b))) ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
57 | 45, 56 | 2or 72 |
. . . 4
((((a ∩ b) ∩ (c
∩ (a ∪ b))) ∪ ((a
∩ b) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) ∪ (((a⊥ ∩ b⊥ ) ∩ (c ∩ (a ∪
b))) ∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ ))))) = (((a ∩ b) ∩
(c ∩ (a ∪ b)))
∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) |
58 | 33, 57 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = (((a ∩ b) ∩
(c ∩ (a ∪ b)))
∪ ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ (a⊥ ∪ b⊥ )))) |
59 | | dfb 94 |
. . 3
(a ≡ c) = ((a ∩
c) ∪ (a⊥ ∩ c⊥ )) |
60 | 11, 58, 59 | le3tr1 140 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ )))) ≤ (a ≡ c) |
61 | 4, 60 | letr 137 |
1
((a ≡ b) ∩ ((a
≡ c) ∪ (b ≡ c)))
≤ (a ≡ c) |