Proof of Theorem u3lem11
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
(a →3 (b⊥ ∩ (a ∪ b))) =
(((a⊥ ∩ (b⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ )) ∪ (a ∩ (a⊥ ∪ (b⊥ ∩ (a ∪ b))))) |
2 | | ax-a1 30 |
. . . . . 6
b = b⊥
⊥ |
3 | 2 | lan 77 |
. . . . 5
(a⊥ ∩ b) = (a⊥ ∩ b⊥ ⊥
) |
4 | 3 | lor 70 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
5 | 4 | ax-r5 38 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b⊥ ))) = (((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a ∩ (a⊥ ∪ b⊥ ))) |
6 | | oran 87 |
. . . . . . . 8
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
7 | 6 | lan 77 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
8 | | anass 76 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
(a⊥ ∩ (b⊥ ∩ (a ∪ b))) |
9 | 8 | ax-r1 35 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ (a ∪ b))) =
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) |
10 | | dff 101 |
. . . . . . 7
0 = ((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
11 | 7, 9, 10 | 3tr1 63 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ (a ∪ b))) =
0 |
12 | | anor3 90 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
13 | 12 | ax-r5 38 |
. . . . . . . . . . 11
((a⊥ ∩ b⊥ ) ∪ b) = ((a ∪
b)⊥ ∪ b) |
14 | | ax-a2 31 |
. . . . . . . . . . 11
((a ∪ b)⊥ ∪ b) = (b ∪
(a ∪ b)⊥ ) |
15 | 13, 14 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∪ b) = (b ∪
(a ∪ b)⊥ ) |
16 | | oran1 91 |
. . . . . . . . . 10
(b ∪ (a ∪ b)⊥ ) = (b⊥ ∩ (a ∪ b))⊥ |
17 | 15, 16 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ b) = (b⊥ ∩ (a ∪ b))⊥ |
18 | 17 | ax-r1 35 |
. . . . . . . 8
(b⊥ ∩ (a ∪ b))⊥ = ((a⊥ ∩ b⊥ ) ∪ b) |
19 | 18 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ ) = (a⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ b)) |
20 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C a⊥ |
21 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C b⊥ |
22 | 21 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C b |
23 | 20, 22 | fh2 470 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ b)) = ((a⊥ ∩ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) |
24 | | anass 76 |
. . . . . . . . . . 11
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ (a⊥ ∩ b⊥ )) |
25 | 24 | ax-r1 35 |
. . . . . . . . . 10
(a⊥ ∩ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ a⊥ ) ∩ b⊥ ) |
26 | | anidm 111 |
. . . . . . . . . . 11
(a⊥ ∩ a⊥ ) = a⊥ |
27 | 26 | ran 78 |
. . . . . . . . . 10
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
28 | 25, 27 | ax-r2 36 |
. . . . . . . . 9
(a⊥ ∩ (a⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
29 | 28 | ax-r5 38 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
30 | 23, 29 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ b)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
31 | 19, 30 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
32 | 11, 31 | 2or 72 |
. . . . 5
((a⊥ ∩
(b⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ )) = (0 ∪ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
33 | | ax-a2 31 |
. . . . . 6
(0 ∪ ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b))) = (((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) ∪ 0) |
34 | | or0 102 |
. . . . . 6
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b)) ∪ 0) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
35 | 33, 34 | ax-r2 36 |
. . . . 5
(0 ∪ ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b))) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
36 | 32, 35 | ax-r2 36 |
. . . 4
((a⊥ ∩
(b⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
37 | | ax-a2 31 |
. . . . . . . . . . 11
(a⊥ ∪ a) = (a ∪
a⊥ ) |
38 | | df-t 41 |
. . . . . . . . . . . 12
1 = (a ∪ a⊥ ) |
39 | 38 | ax-r1 35 |
. . . . . . . . . . 11
(a ∪ a⊥ ) = 1 |
40 | 37, 39 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∪ a) = 1 |
41 | 40 | ax-r5 38 |
. . . . . . . . 9
((a⊥ ∪ a) ∪ b) = (1
∪ b) |
42 | | ax-a3 32 |
. . . . . . . . 9
((a⊥ ∪ a) ∪ b) =
(a⊥ ∪ (a ∪ b)) |
43 | | ax-a2 31 |
. . . . . . . . . 10
(1 ∪ b) = (b ∪ 1) |
44 | | or1 104 |
. . . . . . . . . 10
(b ∪ 1) = 1 |
45 | 43, 44 | ax-r2 36 |
. . . . . . . . 9
(1 ∪ b) = 1 |
46 | 41, 42, 45 | 3tr2 64 |
. . . . . . . 8
(a⊥ ∪ (a ∪ b)) =
1 |
47 | 46 | ran 78 |
. . . . . . 7
((a⊥ ∪
(a ∪ b)) ∩ (a⊥ ∪ b⊥ )) = (1 ∩ (a⊥ ∪ b⊥ )) |
48 | | ancom 74 |
. . . . . . . 8
(1 ∩ (a⊥ ∪
b⊥ )) = ((a⊥ ∪ b⊥ ) ∩ 1) |
49 | | an1 106 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ 1) = (a⊥ ∪ b⊥ ) |
50 | 48, 49 | ax-r2 36 |
. . . . . . 7
(1 ∩ (a⊥ ∪
b⊥ )) = (a⊥ ∪ b⊥ ) |
51 | 47, 50 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∪ b)) ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ b⊥ ) |
52 | 51 | lan 77 |
. . . . 5
(a ∩ ((a⊥ ∪ (a ∪ b))
∩ (a⊥ ∪ b⊥ ))) = (a ∩ (a⊥ ∪ b⊥ )) |
53 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ (a ∪ b)) =
((a ∪ b) ∩ b⊥ ) |
54 | 53 | lor 70 |
. . . . . . 7
(a⊥ ∪ (b⊥ ∩ (a ∪ b))) =
(a⊥ ∪ ((a ∪ b) ∩
b⊥ )) |
55 | | comor1 461 |
. . . . . . . . 9
(a ∪ b) C a |
56 | 55 | comcom2 183 |
. . . . . . . 8
(a ∪ b) C a⊥ |
57 | | comor2 462 |
. . . . . . . . 9
(a ∪ b) C b |
58 | 57 | comcom2 183 |
. . . . . . . 8
(a ∪ b) C b⊥ |
59 | 56, 58 | fh4 472 |
. . . . . . 7
(a⊥ ∪
((a ∪ b) ∩ b⊥ )) = ((a⊥ ∪ (a ∪ b))
∩ (a⊥ ∪ b⊥ )) |
60 | 54, 59 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (b⊥ ∩ (a ∪ b))) =
((a⊥ ∪ (a ∪ b))
∩ (a⊥ ∪ b⊥ )) |
61 | 60 | lan 77 |
. . . . 5
(a ∩ (a⊥ ∪ (b⊥ ∩ (a ∪ b)))) =
(a ∩ ((a⊥ ∪ (a ∪ b))
∩ (a⊥ ∪ b⊥ ))) |
62 | | id 59 |
. . . . 5
(a ∩ (a⊥ ∪ b⊥ )) = (a ∩ (a⊥ ∪ b⊥ )) |
63 | 52, 61, 62 | 3tr1 63 |
. . . 4
(a ∩ (a⊥ ∪ (b⊥ ∩ (a ∪ b)))) =
(a ∩ (a⊥ ∪ b⊥ )) |
64 | 36, 63 | 2or 72 |
. . 3
(((a⊥ ∩
(b⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ )) ∪ (a ∩ (a⊥ ∪ (b⊥ ∩ (a ∪ b))))) =
(((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b⊥ ))) |
65 | | df-i3 46 |
. . 3
(a →3 b⊥ ) = (((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) ∪
(a ∩ (a⊥ ∪ b⊥ ))) |
66 | 5, 64, 65 | 3tr1 63 |
. 2
(((a⊥ ∩
(b⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (b⊥ ∩ (a ∪ b))⊥ )) ∪ (a ∩ (a⊥ ∪ (b⊥ ∩ (a ∪ b))))) =
(a →3 b⊥ ) |
67 | 1, 66 | ax-r2 36 |
1
(a →3 (b⊥ ∩ (a ∪ b))) =
(a →3 b⊥ ) |