QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u3lem11 GIF version

Theorem u3lem11 786
Description: Lemma for unified implication study. (Contributed by NM, 18-Jan-1998.)
Assertion
Ref Expression
u3lem11 (a3 (b ∩ (ab))) = (a3 b )

Proof of Theorem u3lem11
StepHypRef Expression
1 df-i3 46 . 2 (a3 (b ∩ (ab))) = (((a ∩ (b ∩ (ab))) ∪ (a ∩ (b ∩ (ab)) )) ∪ (a ∩ (a ∪ (b ∩ (ab)))))
2 ax-a1 30 . . . . . 6 b = b
32lan 77 . . . . 5 (ab) = (ab )
43lor 70 . . . 4 ((ab ) ∪ (ab)) = ((ab ) ∪ (ab ))
54ax-r5 38 . . 3 (((ab ) ∪ (ab)) ∪ (a ∩ (ab ))) = (((ab ) ∪ (ab )) ∪ (a ∩ (ab )))
6 oran 87 . . . . . . . 8 (ab) = (ab )
76lan 77 . . . . . . 7 ((ab ) ∩ (ab)) = ((ab ) ∩ (ab ) )
8 anass 76 . . . . . . . 8 ((ab ) ∩ (ab)) = (a ∩ (b ∩ (ab)))
98ax-r1 35 . . . . . . 7 (a ∩ (b ∩ (ab))) = ((ab ) ∩ (ab))
10 dff 101 . . . . . . 7 0 = ((ab ) ∩ (ab ) )
117, 9, 103tr1 63 . . . . . 6 (a ∩ (b ∩ (ab))) = 0
12 anor3 90 . . . . . . . . . . . 12 (ab ) = (ab)
1312ax-r5 38 . . . . . . . . . . 11 ((ab ) ∪ b) = ((ab)b)
14 ax-a2 31 . . . . . . . . . . 11 ((ab)b) = (b ∪ (ab) )
1513, 14ax-r2 36 . . . . . . . . . 10 ((ab ) ∪ b) = (b ∪ (ab) )
16 oran1 91 . . . . . . . . . 10 (b ∪ (ab) ) = (b ∩ (ab))
1715, 16ax-r2 36 . . . . . . . . 9 ((ab ) ∪ b) = (b ∩ (ab))
1817ax-r1 35 . . . . . . . 8 (b ∩ (ab)) = ((ab ) ∪ b)
1918lan 77 . . . . . . 7 (a ∩ (b ∩ (ab)) ) = (a ∩ ((ab ) ∪ b))
20 coman1 185 . . . . . . . . 9 (ab ) C a
21 coman2 186 . . . . . . . . . 10 (ab ) C b
2221comcom7 460 . . . . . . . . 9 (ab ) C b
2320, 22fh2 470 . . . . . . . 8 (a ∩ ((ab ) ∪ b)) = ((a ∩ (ab )) ∪ (ab))
24 anass 76 . . . . . . . . . . 11 ((aa ) ∩ b ) = (a ∩ (ab ))
2524ax-r1 35 . . . . . . . . . 10 (a ∩ (ab )) = ((aa ) ∩ b )
26 anidm 111 . . . . . . . . . . 11 (aa ) = a
2726ran 78 . . . . . . . . . 10 ((aa ) ∩ b ) = (ab )
2825, 27ax-r2 36 . . . . . . . . 9 (a ∩ (ab )) = (ab )
2928ax-r5 38 . . . . . . . 8 ((a ∩ (ab )) ∪ (ab)) = ((ab ) ∪ (ab))
3023, 29ax-r2 36 . . . . . . 7 (a ∩ ((ab ) ∪ b)) = ((ab ) ∪ (ab))
3119, 30ax-r2 36 . . . . . 6 (a ∩ (b ∩ (ab)) ) = ((ab ) ∪ (ab))
3211, 312or 72 . . . . 5 ((a ∩ (b ∩ (ab))) ∪ (a ∩ (b ∩ (ab)) )) = (0 ∪ ((ab ) ∪ (ab)))
33 ax-a2 31 . . . . . 6 (0 ∪ ((ab ) ∪ (ab))) = (((ab ) ∪ (ab)) ∪ 0)
34 or0 102 . . . . . 6 (((ab ) ∪ (ab)) ∪ 0) = ((ab ) ∪ (ab))
3533, 34ax-r2 36 . . . . 5 (0 ∪ ((ab ) ∪ (ab))) = ((ab ) ∪ (ab))
3632, 35ax-r2 36 . . . 4 ((a ∩ (b ∩ (ab))) ∪ (a ∩ (b ∩ (ab)) )) = ((ab ) ∪ (ab))
37 ax-a2 31 . . . . . . . . . . 11 (aa) = (aa )
38 df-t 41 . . . . . . . . . . . 12 1 = (aa )
3938ax-r1 35 . . . . . . . . . . 11 (aa ) = 1
4037, 39ax-r2 36 . . . . . . . . . 10 (aa) = 1
4140ax-r5 38 . . . . . . . . 9 ((aa) ∪ b) = (1 ∪ b)
42 ax-a3 32 . . . . . . . . 9 ((aa) ∪ b) = (a ∪ (ab))
43 ax-a2 31 . . . . . . . . . 10 (1 ∪ b) = (b ∪ 1)
44 or1 104 . . . . . . . . . 10 (b ∪ 1) = 1
4543, 44ax-r2 36 . . . . . . . . 9 (1 ∪ b) = 1
4641, 42, 453tr2 64 . . . . . . . 8 (a ∪ (ab)) = 1
4746ran 78 . . . . . . 7 ((a ∪ (ab)) ∩ (ab )) = (1 ∩ (ab ))
48 ancom 74 . . . . . . . 8 (1 ∩ (ab )) = ((ab ) ∩ 1)
49 an1 106 . . . . . . . 8 ((ab ) ∩ 1) = (ab )
5048, 49ax-r2 36 . . . . . . 7 (1 ∩ (ab )) = (ab )
5147, 50ax-r2 36 . . . . . 6 ((a ∪ (ab)) ∩ (ab )) = (ab )
5251lan 77 . . . . 5 (a ∩ ((a ∪ (ab)) ∩ (ab ))) = (a ∩ (ab ))
53 ancom 74 . . . . . . . 8 (b ∩ (ab)) = ((ab) ∩ b )
5453lor 70 . . . . . . 7 (a ∪ (b ∩ (ab))) = (a ∪ ((ab) ∩ b ))
55 comor1 461 . . . . . . . . 9 (ab) C a
5655comcom2 183 . . . . . . . 8 (ab) C a
57 comor2 462 . . . . . . . . 9 (ab) C b
5857comcom2 183 . . . . . . . 8 (ab) C b
5956, 58fh4 472 . . . . . . 7 (a ∪ ((ab) ∩ b )) = ((a ∪ (ab)) ∩ (ab ))
6054, 59ax-r2 36 . . . . . 6 (a ∪ (b ∩ (ab))) = ((a ∪ (ab)) ∩ (ab ))
6160lan 77 . . . . 5 (a ∩ (a ∪ (b ∩ (ab)))) = (a ∩ ((a ∪ (ab)) ∩ (ab )))
62 id 59 . . . . 5 (a ∩ (ab )) = (a ∩ (ab ))
6352, 61, 623tr1 63 . . . 4 (a ∩ (a ∪ (b ∩ (ab)))) = (a ∩ (ab ))
6436, 632or 72 . . 3 (((a ∩ (b ∩ (ab))) ∪ (a ∩ (b ∩ (ab)) )) ∪ (a ∩ (a ∪ (b ∩ (ab))))) = (((ab ) ∪ (ab)) ∪ (a ∩ (ab )))
65 df-i3 46 . . 3 (a3 b ) = (((ab ) ∪ (ab )) ∪ (a ∩ (ab )))
665, 64, 653tr1 63 . 2 (((a ∩ (b ∩ (ab))) ∪ (a ∩ (b ∩ (ab)) )) ∪ (a ∩ (a ∪ (b ∩ (ab))))) = (a3 b )
671, 66ax-r2 36 1 (a3 (b ∩ (ab))) = (a3 b )
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  0wf 9  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u3lem11a  787
  Copyright terms: Public domain W3C validator