ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre GIF version

Theorem expcnvre 11275
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar (𝜑𝐴 ∈ ℝ)
expcnvre.a1 (𝜑𝐴 < 1)
expcnvre.a0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
expcnvre (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3 (𝜑𝐴 ∈ ℝ)
2 1red 7784 . . 3 (𝜑 → 1 ∈ ℝ)
3 expcnvre.a1 . . 3 (𝜑𝐴 < 1)
4 qbtwnre 10037 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 < 1) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
51, 2, 3, 4syl3anc 1216 . 2 (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 1))
6 nn0uz 9363 . . 3 0 = (ℤ‘0)
7 0zd 9069 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℤ)
8 qre 9420 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98ad2antrl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℝ)
109recnd 7797 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 ∈ ℂ)
11 0red 7770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ∈ ℝ)
121adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 ∈ ℝ)
13 expcnvre.a0 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐴)
1413adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝐴)
15 simprrl 528 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝐴 < 𝑥)
1611, 12, 9, 14, 15lelttrd 7890 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 < 𝑥)
1711, 9, 16ltled 7884 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 0 ≤ 𝑥)
189, 17absidd 10942 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) = 𝑥)
19 simprrr 529 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 < 1)
2018, 19eqbrtrd 3950 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (abs‘𝑥) < 1)
219, 16gt0ap0d 8394 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → 𝑥 # 0)
2210, 20, 21expcnvap0 11274 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) ⇝ 0)
23 nn0ex 8986 . . . . 5 0 ∈ V
2423mptex 5646 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
2524a1i 9 . . 3 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
26 simpr 109 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
279adantr 274 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℝ)
2827, 26reexpcld 10444 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℝ)
29 oveq2 5782 . . . . . 6 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
30 eqid 2139 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑥𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝑥𝑛))
3129, 30fvmptg 5497 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3226, 28, 31syl2anc 408 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) = (𝑥𝑘))
3332, 28eqeltrd 2216 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘) ∈ ℝ)
3412adantr 274 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
3534, 26reexpcld 10444 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
36 oveq2 5782 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
37 eqid 2139 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3836, 37fvmptg 5497 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3926, 35, 38syl2anc 408 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
4039, 35eqeltrd 2216 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
4114adantr 274 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
4215adantr 274 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴 < 𝑥)
4334, 27, 42ltled 7884 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 𝐴𝑥)
44 leexp1a 10351 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝑥)) → (𝐴𝑘) ≤ (𝑥𝑘))
4534, 27, 26, 41, 43, 44syl32anc 1224 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ (𝑥𝑘))
4645, 39, 323brtr4d 3960 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝑥𝑛))‘𝑘))
4734, 26, 41expge0d 10445 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
4847, 39breqtrrd 3956 . . 3 (((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11108 . 2 ((𝜑 ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 1))) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
505, 49rexlimddv 2554 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wrex 2417  Vcvv 2686   class class class wbr 3929  cmpt 3989  cfv 5123  (class class class)co 5774  cr 7622  0cc0 7623  1c1 7624   < clt 7803  cle 7804  0cn0 8980  cq 9414  cexp 10295  abscabs 10772  cli 11050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-clim 11051
This theorem is referenced by:  expcnv  11276
  Copyright terms: Public domain W3C validator