ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd GIF version

Theorem expnbnd 9539
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 915 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
21adantr 265 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
3 simp2 916 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
43adantr 265 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
5 simpr 107 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐴)
6 simp3 917 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
76adantr 265 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐵)
8 1red 7099 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
91, 8resubcld 7450 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 − 1) ∈ ℝ)
103, 8resubcld 7450 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
118, 3posdifd 7596 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
126, 11mpbid 139 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
1310, 12gt0ap0d 7692 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) # 0)
149, 10, 13redivclapd 7882 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
15 arch 8235 . . . . . . 7 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1614, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
17163expa 1115 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1817adantrl 455 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
19 simplll 493 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
2019adantr 265 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 ∈ ℝ)
21 simpllr 494 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
22 1red 7099 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
2321, 22resubcld 7450 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵 − 1) ∈ ℝ)
24 simpr 107 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2524nnred 8002 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2623, 25remulcld 7114 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
2726, 22readdcld 7113 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2827adantr 265 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2924nnnn0d 8291 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
30 reexpcl 9436 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3121, 29, 30syl2anc 397 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
3231adantr 265 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵𝑘) ∈ ℝ)
33 simpr 107 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
34 1red 7099 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 ∈ ℝ)
3520, 34resubcld 7450 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) ∈ ℝ)
36 simplr 490 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ)
3736nnred 8002 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℝ)
3821adantr 265 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐵 ∈ ℝ)
3938, 34resubcld 7450 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵 − 1) ∈ ℝ)
40 simplrr 496 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 < 𝐵)
4140adantr 265 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 < 𝐵)
4234, 38posdifd 7596 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
4341, 42mpbid 139 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 < (𝐵 − 1))
44 ltdivmul 7916 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4535, 37, 39, 43, 44syl112anc 1150 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4633, 45mpbid 139 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) < ((𝐵 − 1) · 𝑘))
4739, 37remulcld 7114 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
4820, 34, 47ltsubaddd 7605 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) < ((𝐵 − 1) · 𝑘) ↔ 𝐴 < (((𝐵 − 1) · 𝑘) + 1)))
4946, 48mpbid 139 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (((𝐵 − 1) · 𝑘) + 1))
5036nnnn0d 8291 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ0)
51 0red 7085 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
52 0lt1 7201 . . . . . . . . . . . 12 0 < 1
53 0re 7084 . . . . . . . . . . . . 13 0 ∈ ℝ
54 1re 7083 . . . . . . . . . . . . 13 1 ∈ ℝ
55 lttr 7150 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5653, 54, 55mp3an12 1233 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5752, 56mpani 414 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
5821, 40, 57sylc 60 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
5951, 21, 58ltled 7193 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐵)
6059adantr 265 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 ≤ 𝐵)
61 bernneq2 9537 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6238, 50, 60, 61syl3anc 1146 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6320, 28, 32, 49, 62ltletrd 7491 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (𝐵𝑘))
6463ex 112 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘𝐴 < (𝐵𝑘)))
6564reximdva 2438 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → (∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))
6618, 65mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
672, 4, 5, 7, 66syl22anc 1147 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
68 1nn 8000 . . 3 1 ∈ ℕ
69 simpr 107 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
70 simpl2 919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7170recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
72 exp1 9425 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
7371, 72syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → (𝐵↑1) = 𝐵)
7469, 73breqtrrd 3817 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵↑1))
75 oveq2 5547 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
7675breq2d 3803 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
7776rspcev 2673 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
7868, 74, 77sylancr 399 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
79 axltwlin 7145 . . . . 5 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8054, 79mp3an1 1230 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8180ancoms 259 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
82813impia 1112 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < 𝐵))
8367, 78, 82mpjaodan 722 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639  w3a 896   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   · cmul 6951   < clt 7118  cle 7119  cmin 7244   / cdiv 7724  cn 7989  0cn0 8238  cexp 9418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059  ax-arch 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-n0 8239  df-z 8302  df-uz 8569  df-iseq 9375  df-iexp 9419
This theorem is referenced by:  expnlbnd  9540
  Copyright terms: Public domain W3C validator