ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd GIF version

Theorem expnbnd 10415
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 981 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
21adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
3 simp2 982 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
43adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
5 simpr 109 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐴)
6 simp3 983 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
76adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → 1 < 𝐵)
8 1red 7781 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
91, 8resubcld 8143 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐴 − 1) ∈ ℝ)
103, 8resubcld 8143 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
118, 3posdifd 8294 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
126, 11mpbid 146 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
1310, 12gt0ap0d 8391 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) # 0)
149, 10, 13redivclapd 8594 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
15 arch 8974 . . . . . . 7 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1614, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
17163expa 1181 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
1817adantrl 469 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
19 simplll 522 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
2019adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 ∈ ℝ)
21 simpllr 523 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
22 1red 7781 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
2321, 22resubcld 8143 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵 − 1) ∈ ℝ)
24 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2524nnred 8733 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2623, 25remulcld 7796 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
2726, 22readdcld 7795 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2827adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ∈ ℝ)
2924nnnn0d 9030 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
30 reexpcl 10310 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3121, 29, 30syl2anc 408 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ)
3231adantr 274 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵𝑘) ∈ ℝ)
33 simpr 109 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) / (𝐵 − 1)) < 𝑘)
34 1red 7781 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 ∈ ℝ)
3520, 34resubcld 8143 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) ∈ ℝ)
36 simplr 519 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ)
3736nnred 8733 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℝ)
3821adantr 274 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐵 ∈ ℝ)
3938, 34resubcld 8143 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐵 − 1) ∈ ℝ)
40 simplrr 525 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 1 < 𝐵)
4140adantr 274 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 1 < 𝐵)
4234, 38posdifd 8294 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
4341, 42mpbid 146 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 < (𝐵 − 1))
44 ltdivmul 8634 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4535, 37, 39, 43, 44syl112anc 1220 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘 ↔ (𝐴 − 1) < ((𝐵 − 1) · 𝑘)))
4633, 45mpbid 146 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (𝐴 − 1) < ((𝐵 − 1) · 𝑘))
4739, 37remulcld 7796 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐵 − 1) · 𝑘) ∈ ℝ)
4820, 34, 47ltsubaddd 8303 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → ((𝐴 − 1) < ((𝐵 − 1) · 𝑘) ↔ 𝐴 < (((𝐵 − 1) · 𝑘) + 1)))
4946, 48mpbid 146 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (((𝐵 − 1) · 𝑘) + 1))
5036nnnn0d 9030 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝑘 ∈ ℕ0)
51 0red 7767 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
52 0lt1 7889 . . . . . . . . . . . 12 0 < 1
53 0re 7766 . . . . . . . . . . . . 13 0 ∈ ℝ
54 1re 7765 . . . . . . . . . . . . 13 1 ∈ ℝ
55 lttr 7838 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5653, 54, 55mp3an12 1305 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
5752, 56mpani 426 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
5821, 40, 57sylc 62 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 < 𝐵)
5951, 21, 58ltled 7881 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐵)
6059adantr 274 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 0 ≤ 𝐵)
61 bernneq2 10413 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6238, 50, 60, 61syl3anc 1216 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → (((𝐵 − 1) · 𝑘) + 1) ≤ (𝐵𝑘))
6320, 28, 32, 49, 62ltletrd 8185 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) ∧ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘) → 𝐴 < (𝐵𝑘))
6463ex 114 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) / (𝐵 − 1)) < 𝑘𝐴 < (𝐵𝑘)))
6564reximdva 2534 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → (∃𝑘 ∈ ℕ ((𝐴 − 1) / (𝐵 − 1)) < 𝑘 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))
6618, 65mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
672, 4, 5, 7, 66syl22anc 1217 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
68 1nn 8731 . . 3 1 ∈ ℕ
69 simpr 109 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
70 simpl2 985 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
7170recnd 7794 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
72 exp1 10299 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
7371, 72syl 14 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → (𝐵↑1) = 𝐵)
7469, 73breqtrrd 3956 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵↑1))
75 oveq2 5782 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
7675breq2d 3941 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
7776rspcev 2789 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
7868, 74, 77sylancr 410 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
79 axltwlin 7832 . . . . 5 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8054, 79mp3an1 1302 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
8180ancoms 266 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → (1 < 𝐴𝐴 < 𝐵)))
82813impia 1178 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < 𝐵))
8367, 78, 82mpjaodan 787 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  0cn0 8977  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  expnlbnd  10416
  Copyright terms: Public domain W3C validator