![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnred | GIF version |
Description: A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8110 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
3 | 1, 2 | sseldi 2998 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ℝcr 7042 ℕcn 8106 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-in 2980 df-ss 2987 df-int 3645 df-inn 8107 |
This theorem is referenced by: exbtwnzlemstep 9334 qbtwnrelemcalc 9342 qbtwnre 9343 flqdiv 9403 modqmulnn 9424 modifeq2int 9468 modaddmodup 9469 modaddmodlo 9470 modsumfzodifsn 9478 addmodlteq 9480 bernneq3 9692 expnbnd 9693 facwordi 9764 faclbnd 9765 faclbnd2 9766 faclbnd3 9767 faclbnd6 9768 facubnd 9769 facavg 9770 bcp1nk 9786 ibcval5 9787 caucvgrelemcau 10004 caucvgre 10005 cvg1nlemcxze 10006 cvg1nlemcau 10008 cvg1nlemres 10009 resqrexlemdecn 10036 resqrexlemga 10047 dvdslelemd 10388 nno 10450 nnoddm1d2 10454 divalglemnqt 10464 divalglemeunn 10465 dvdsbnd 10492 sqgcd 10562 lcmgcdlem 10603 ncoprmgcdne1b 10615 prmind2 10646 coprm 10667 prmfac1 10675 sqrt2irraplemnn 10701 znnen 10709 |
Copyright terms: Public domain | W3C validator |