Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 GIF version

Theorem resqrexlemcalc2 10120
 Description: Lemma for resqrex 10131. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcalc1 10119 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
51, 2, 3resqrexlemf 10112 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
65ffvelrnda 5355 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
76rpred 8924 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
87resqcld 9798 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ)
92adantr 270 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
108, 9resubcld 7622 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
116rpap0d 8930 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
127, 11sqgt0apd 9800 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < ((𝐹𝑁)↑2))
138, 12elrpd 8922 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
148, 9readdcld 7280 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + 𝐴) ∈ ℝ)
153adantr 270 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → 0 ≤ 𝐴)
168, 9addge01d 7770 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (0 ≤ 𝐴 ↔ ((𝐹𝑁)↑2) ≤ (((𝐹𝑁)↑2) + 𝐴)))
1715, 16mpbid 145 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ≤ (((𝐹𝑁)↑2) + 𝐴))
188, 14, 9, 17lesub1dd 7798 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) + 𝐴) − 𝐴))
198recnd 7279 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
209recnd 7279 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
2119, 20pncand 7557 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + 𝐴) − 𝐴) = ((𝐹𝑁)↑2))
2218, 21breqtrd 3829 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ ((𝐹𝑁)↑2))
2310, 8, 13, 22lediv1dd 8983 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ (((𝐹𝑁)↑2) / ((𝐹𝑁)↑2)))
248, 12gt0ap0d 7865 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
2519, 24dividapd 8011 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) / ((𝐹𝑁)↑2)) = 1)
2623, 25breqtrd 3829 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ 1)
2710, 8, 24redivclapd 8057 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ∈ ℝ)
28 1red 7266 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 1 ∈ ℝ)
291, 2, 3resqrexlemover 10115 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
30 difrp 8921 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐹𝑁)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑁)↑2) ↔ (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+))
319, 8, 30syl2anc 403 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐴 < ((𝐹𝑁)↑2) ↔ (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+))
3229, 31mpbid 145 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+)
33 4re 8253 . . . . . . . 8 4 ∈ ℝ
3433a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
35 4pos 8273 . . . . . . . 8 0 < 4
3635a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
3734, 36elrpd 8922 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ+)
3832, 37rpdivcld 8942 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / 4) ∈ ℝ+)
3927, 28, 38lemul1d 8968 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ 1 ↔ (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) ≤ (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4))))
4026, 39mpbid 145 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) ≤ (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4)))
4110recnd 7279 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
4234recnd 7279 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
4334, 36gt0ap0d 7865 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
4441, 19, 41, 42, 24, 43divmuldivapd 8055 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = (((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)) / (((𝐹𝑁)↑2) · 4)))
4541sqvald 9769 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = ((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)))
4642, 19mulcomd 7272 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (4 · ((𝐹𝑁)↑2)) = (((𝐹𝑁)↑2) · 4))
4745, 46oveq12d 5582 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)) / (((𝐹𝑁)↑2) · 4)))
4844, 47eqtr4d 2118 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
4938rpcnd 8926 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / 4) ∈ ℂ)
5049mulid2d 7269 . . 3 ((𝜑𝑁 ∈ ℕ) → (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = ((((𝐹𝑁)↑2) − 𝐴) / 4))
5140, 48, 503brtr3d 3834 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
524, 51eqbrtrd 3825 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  {csn 3416   class class class wbr 3805   × cxp 4389  ‘cfv 4952  (class class class)co 5564   ↦ cmpt2 5566  ℝcr 7112  0cc0 7113  1c1 7114   + caddc 7116   · cmul 7118   < clt 7285   ≤ cle 7286   − cmin 7416   / cdiv 7897  ℕcn 8176  2c2 8226  4c4 8228  ℝ+crp 8885  seqcseq 9591  ↑cexp 9642 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898  df-inn 8177  df-2 8235  df-3 8236  df-4 8237  df-n0 8426  df-z 8503  df-uz 8771  df-rp 8886  df-iseq 9592  df-iexp 9643 This theorem is referenced by:  resqrexlemcalc3  10121
 Copyright terms: Public domain W3C validator