ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq GIF version

Theorem resqrexlemnmsq 10789
Description: Lemma for resqrex 10798. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnmsq (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10779 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5556 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9483 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
87resqcld 10450 . . . 4 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
98recnd 7794 . . 3 (𝜑 → ((𝐹𝑁)↑2) ∈ ℂ)
10 resqrexlemnmsq.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
114, 10ffvelrnd 5556 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ℝ+)
1211rpred 9483 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
1312resqcld 10450 . . . 4 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1413recnd 7794 . . 3 (𝜑 → ((𝐹𝑀)↑2) ∈ ℂ)
152recnd 7794 . . 3 (𝜑𝐴 ∈ ℂ)
169, 14, 15nnncan2d 8108 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
178, 2resubcld 8143 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
1813, 2resubcld 8143 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ)
1917, 18resubcld 8143 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) ∈ ℝ)
20 1nn 8731 . . . . . . . 8 1 ∈ ℕ
2120a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
224, 21ffvelrnd 5556 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ+)
23 2z 9082 . . . . . . 7 2 ∈ ℤ
2423a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℤ)
2522, 24rpexpcld 10448 . . . . 5 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
26 4nn 8883 . . . . . . . 8 4 ∈ ℕ
2726a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℕ)
2827nnrpd 9482 . . . . . 6 (𝜑 → 4 ∈ ℝ+)
295nnzd 9172 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
30 1zzd 9081 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3129, 30zsubcld 9178 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
3228, 31rpexpcld 10448 . . . . 5 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3325, 32rpdivcld 9501 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
3433rpred 9483 . . 3 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
351, 2, 3resqrexlemover 10782 . . . . . 6 ((𝜑𝑀 ∈ ℕ) → 𝐴 < ((𝐹𝑀)↑2))
3610, 35mpdan 417 . . . . 5 (𝜑𝐴 < ((𝐹𝑀)↑2))
37 difrp 9480 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝐹𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
382, 13, 37syl2anc 408 . . . . 5 (𝜑 → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
3936, 38mpbid 146 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+)
4017, 39ltsubrpd 9516 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹𝑁)↑2) − 𝐴))
411, 2, 3resqrexlemcalc3 10788 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
425, 41mpdan 417 . . 3 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4319, 17, 34, 40, 42ltletrd 8185 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4416, 43eqbrtrrd 3952 1 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  {csn 3527   class class class wbr 3929   × cxp 4537  cfv 5123  (class class class)co 5774  cmpo 5776  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  2c2 8771  4c4 8773  cz 9054  +crp 9441  seqcseq 10218  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  resqrexlemnm  10790
  Copyright terms: Public domain W3C validator