ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq GIF version

Theorem resqrexlemnmsq 9836
Description: Lemma for resqrex 9845. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnmsq (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 9826 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5330 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 8719 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
87resqcld 9568 . . . 4 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
98recnd 7112 . . 3 (𝜑 → ((𝐹𝑁)↑2) ∈ ℂ)
10 resqrexlemnmsq.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
114, 10ffvelrnd 5330 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ℝ+)
1211rpred 8719 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
1312resqcld 9568 . . . 4 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1413recnd 7112 . . 3 (𝜑 → ((𝐹𝑀)↑2) ∈ ℂ)
152recnd 7112 . . 3 (𝜑𝐴 ∈ ℂ)
169, 14, 15nnncan2d 7419 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
178, 2resubcld 7450 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
1813, 2resubcld 7450 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ)
1917, 18resubcld 7450 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) ∈ ℝ)
20 1nn 8000 . . . . . . . 8 1 ∈ ℕ
2120a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
224, 21ffvelrnd 5330 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ+)
23 2z 8329 . . . . . . 7 2 ∈ ℤ
2423a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℤ)
2522, 24rpexpcld 9566 . . . . 5 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
26 4nn 8145 . . . . . . . 8 4 ∈ ℕ
2726a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℕ)
2827nnrpd 8718 . . . . . 6 (𝜑 → 4 ∈ ℝ+)
295nnzd 8417 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
30 1zzd 8328 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3129, 30zsubcld 8423 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
3228, 31rpexpcld 9566 . . . . 5 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3325, 32rpdivcld 8737 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
3433rpred 8719 . . 3 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
351, 2, 3resqrexlemover 9829 . . . . . 6 ((𝜑𝑀 ∈ ℕ) → 𝐴 < ((𝐹𝑀)↑2))
3610, 35mpdan 406 . . . . 5 (𝜑𝐴 < ((𝐹𝑀)↑2))
37 difrp 8716 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝐹𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
382, 13, 37syl2anc 397 . . . . 5 (𝜑 → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
3936, 38mpbid 139 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+)
4017, 39ltsubrpd 8752 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹𝑁)↑2) − 𝐴))
411, 2, 3resqrexlemcalc3 9835 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
425, 41mpdan 406 . . 3 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4319, 17, 34, 40, 42ltletrd 7491 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4416, 43eqbrtrrd 3813 1 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102   = wceq 1259  wcel 1409  {csn 3402   class class class wbr 3791   × cxp 4370  cfv 4929  (class class class)co 5539  cmpt2 5541  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   < clt 7118  cle 7119  cmin 7244   / cdiv 7724  cn 7989  2c2 8039  4c4 8041  cz 8301  +crp 8680  seqcseq 9369  cexp 9413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-3 8049  df-4 8050  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681  df-iseq 9370  df-iexp 9414
This theorem is referenced by:  resqrexlemnm  9837
  Copyright terms: Public domain W3C validator