Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Structured version   Visualization version   GIF version

Theorem 0rrv 31709
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
0rrv (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Distinct variable group:   𝑥,𝑃
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 0rrv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 10643 . . . . 5 0 ∈ ℝ
21rgenw 3150 . . . 4 𝑥 dom 𝑃0 ∈ ℝ
3 eqid 2821 . . . . 5 (𝑥 dom 𝑃 ↦ 0) = (𝑥 dom 𝑃 ↦ 0)
43fmpt 6874 . . . 4 (∀𝑥 dom 𝑃0 ∈ ℝ ↔ (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
52, 4mpbi 232 . . 3 (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ
65a1i 11 . 2 (𝜑 → (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
7 fconstmpt 5614 . . . . . . . . . 10 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
87cnveqi 5745 . . . . . . . . 9 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
9 cnvxp 6014 . . . . . . . . 9 ( dom 𝑃 × {0}) = ({0} × dom 𝑃)
108, 9eqtr3i 2846 . . . . . . . 8 (𝑥 dom 𝑃 ↦ 0) = ({0} × dom 𝑃)
1110imaeq1i 5926 . . . . . . 7 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = (({0} × dom 𝑃) “ 𝑦)
12 df-ima 5568 . . . . . . 7 (({0} × dom 𝑃) “ 𝑦) = ran (({0} × dom 𝑃) ↾ 𝑦)
13 df-rn 5566 . . . . . . 7 ran (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
1411, 12, 133eqtri 2848 . . . . . 6 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
15 df-res 5567 . . . . . . . . 9 (({0} × dom 𝑃) ↾ 𝑦) = (({0} × dom 𝑃) ∩ (𝑦 × V))
16 inxp 5703 . . . . . . . . 9 (({0} × dom 𝑃) ∩ (𝑦 × V)) = (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V))
17 inv1 4348 . . . . . . . . . 10 ( dom 𝑃 ∩ V) = dom 𝑃
1817xpeq2i 5582 . . . . . . . . 9 (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V)) = (({0} ∩ 𝑦) × dom 𝑃)
1915, 16, 183eqtri 2848 . . . . . . . 8 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2019cnveqi 5745 . . . . . . 7 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2120dmeqi 5773 . . . . . 6 dom (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} ∩ 𝑦) × dom 𝑃)
22 cnvxp 6014 . . . . . . 7 (({0} ∩ 𝑦) × dom 𝑃) = ( dom 𝑃 × ({0} ∩ 𝑦))
2322dmeqi 5773 . . . . . 6 dom (({0} ∩ 𝑦) × dom 𝑃) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
2414, 21, 233eqtri 2848 . . . . 5 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
25 xpeq2 5576 . . . . . . . . . 10 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ( dom 𝑃 × ∅))
26 xp0 6015 . . . . . . . . . 10 ( dom 𝑃 × ∅) = ∅
2725, 26syl6eq 2872 . . . . . . . . 9 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
2827dmeqd 5774 . . . . . . . 8 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom ∅)
29 dm0 5790 . . . . . . . 8 dom ∅ = ∅
3028, 29syl6eq 2872 . . . . . . 7 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
3130adantl 484 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
32 0rrv.1 . . . . . . . 8 (𝜑𝑃 ∈ Prob)
33 domprobsiga 31669 . . . . . . . 8 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
34 0elsiga 31373 . . . . . . . 8 (dom 𝑃 ran sigAlgebra → ∅ ∈ dom 𝑃)
3532, 33, 343syl 18 . . . . . . 7 (𝜑 → ∅ ∈ dom 𝑃)
3635adantr 483 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ∅ ∈ dom 𝑃)
3731, 36eqeltrd 2913 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
3824, 37eqeltrid 2917 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
39 dmxp 5799 . . . . . . 7 (({0} ∩ 𝑦) ≠ ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4039adantl 484 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4132unveldomd 31673 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4241adantr 483 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom 𝑃 ∈ dom 𝑃)
4340, 42eqeltrd 2913 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
4424, 43eqeltrid 2917 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4538, 44pm2.61dane 3104 . . 3 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4645ralrimivw 3183 . 2 (𝜑 → ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4732isrrvv 31701 . 2 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃) ↔ ((𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)))
486, 46, 47mpbir2and 711 1 (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cin 3935  c0 4291  {csn 4567   cuni 4838  cmpt 5146   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  wf 6351  cfv 6355  cr 10536  0cc0 10537  sigAlgebracsiga 31367  𝔅cbrsiga 31440  Probcprb 31665  rRndVarcrrv 31698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-addrcl 10598  ax-rnegex 10608  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-ioo 12743  df-topgen 16717  df-top 21502  df-bases 21554  df-esum 31287  df-siga 31368  df-sigagen 31398  df-brsiga 31441  df-meas 31455  df-mbfm 31509  df-prob 31666  df-rrv 31699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator