MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlkons1 Structured version   Visualization version   GIF version

Theorem 0wlkons1 26975
Description: A walk of length 0 from a vertex to itself. (Contributed by AV, 17-Apr-2021.)
Hypothesis
Ref Expression
0wlk.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0wlkons1 (𝑁𝑉 → ∅(𝑁(WalksOn‘𝐺)𝑁)⟨“𝑁”⟩)

Proof of Theorem 0wlkons1
StepHypRef Expression
1 s1val 13373 . . 3 (𝑁𝑉 → ⟨“𝑁”⟩ = {⟨0, 𝑁⟩})
2 0z 11385 . . . . . 6 0 ∈ ℤ
32jctl 564 . . . . 5 (𝑁𝑉 → (0 ∈ ℤ ∧ 𝑁𝑉))
4 f1sng 6176 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:{0}–1-1𝑉)
5 f1f 6099 . . . . 5 ({⟨0, 𝑁⟩}:{0}–1-1𝑉 → {⟨0, 𝑁⟩}:{0}⟶𝑉)
63, 4, 53syl 18 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}⟶𝑉)
7 id 22 . . . . 5 (⟨“𝑁”⟩ = {⟨0, 𝑁⟩} → ⟨“𝑁”⟩ = {⟨0, 𝑁⟩})
8 fzsn 12380 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
92, 8mp1i 13 . . . . 5 (⟨“𝑁”⟩ = {⟨0, 𝑁⟩} → (0...0) = {0})
107, 9feq12d 6031 . . . 4 (⟨“𝑁”⟩ = {⟨0, 𝑁⟩} → (⟨“𝑁”⟩:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:{0}⟶𝑉))
116, 10syl5ibrcom 237 . . 3 (𝑁𝑉 → (⟨“𝑁”⟩ = {⟨0, 𝑁⟩} → ⟨“𝑁”⟩:(0...0)⟶𝑉))
121, 11mpd 15 . 2 (𝑁𝑉 → ⟨“𝑁”⟩:(0...0)⟶𝑉)
13 s1fv 13385 . 2 (𝑁𝑉 → (⟨“𝑁”⟩‘0) = 𝑁)
14 0wlk.v . . 3 𝑉 = (Vtx‘𝐺)
15140wlkon 26974 . 2 ((⟨“𝑁”⟩:(0...0)⟶𝑉 ∧ (⟨“𝑁”⟩‘0) = 𝑁) → ∅(𝑁(WalksOn‘𝐺)𝑁)⟨“𝑁”⟩)
1612, 13, 15syl2anc 693 1 (𝑁𝑉 → ∅(𝑁(WalksOn‘𝐺)𝑁)⟨“𝑁”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  c0 3913  {csn 4175  cop 4181   class class class wbr 4651  wf 5882  1-1wf1 5883  cfv 5886  (class class class)co 6647  0cc0 9933  cz 11374  ...cfz 12323  ⟨“cs1 13289  Vtxcvtx 25868  WalksOncwlkson 26487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-hash 13113  df-word 13294  df-s1 13297  df-wlks 26489  df-wlkson 26490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator