Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem10 Structured version   Visualization version   GIF version

Theorem 3wlkdlem10 27147
 Description: Lemma 10 for 3wlkd 27148. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem10 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem10
StepHypRef Expression
1 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . 4 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
4 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
5 3wlkd.e . . . 4 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
61, 2, 3, 4, 53wlkdlem9 27146 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))
71, 2, 33wlkdlem3 27139 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
8 preq12 4302 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
98adantr 480 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
109sseq1d 3665 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0))))
11 simplr 807 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
12 simprl 809 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
1311, 12preq12d 4308 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1413sseq1d 3665 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))))
15 preq12 4302 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1615adantl 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1716sseq1d 3665 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)) ↔ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))
1810, 14, 173anbi123d 1439 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))))
197, 18syl 17 . . 3 (𝜑 → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))))
206, 19mpbird 247 . 2 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
211, 23wlkdlem2 27138 . . . 4 (0..^(#‘𝐹)) = {0, 1, 2}
2221raleqi 3172 . . 3 (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
23 c0ex 10072 . . . 4 0 ∈ V
24 1ex 10073 . . . 4 1 ∈ V
25 2ex 11130 . . . 4 2 ∈ V
26 fveq2 6229 . . . . . 6 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
27 oveq1 6697 . . . . . . . 8 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
28 0p1e1 11170 . . . . . . . 8 (0 + 1) = 1
2927, 28syl6eq 2701 . . . . . . 7 (𝑘 = 0 → (𝑘 + 1) = 1)
3029fveq2d 6233 . . . . . 6 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
3126, 30preq12d 4308 . . . . 5 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
32 fveq2 6229 . . . . . 6 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
3332fveq2d 6233 . . . . 5 (𝑘 = 0 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘0)))
3431, 33sseq12d 3667 . . . 4 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
35 fveq2 6229 . . . . . 6 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
36 oveq1 6697 . . . . . . . 8 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
37 1p1e2 11172 . . . . . . . 8 (1 + 1) = 2
3836, 37syl6eq 2701 . . . . . . 7 (𝑘 = 1 → (𝑘 + 1) = 2)
3938fveq2d 6233 . . . . . 6 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
4035, 39preq12d 4308 . . . . 5 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
41 fveq2 6229 . . . . . 6 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
4241fveq2d 6233 . . . . 5 (𝑘 = 1 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘1)))
4340, 42sseq12d 3667 . . . 4 (𝑘 = 1 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1))))
44 fveq2 6229 . . . . . 6 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
45 oveq1 6697 . . . . . . . 8 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
46 2p1e3 11189 . . . . . . . 8 (2 + 1) = 3
4745, 46syl6eq 2701 . . . . . . 7 (𝑘 = 2 → (𝑘 + 1) = 3)
4847fveq2d 6233 . . . . . 6 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
4944, 48preq12d 4308 . . . . 5 (𝑘 = 2 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)})
50 fveq2 6229 . . . . . 6 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
5150fveq2d 6233 . . . . 5 (𝑘 = 2 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘2)))
5249, 51sseq12d 3667 . . . 4 (𝑘 = 2 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
5323, 24, 25, 34, 43, 52raltp 4272 . . 3 (∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
5422, 53bitri 264 . 2 (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
5520, 54sylibr 224 1 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941   ⊆ wss 3607  {cpr 4212  {ctp 4214  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  2c2 11108  3c3 11109  ..^cfzo 12504  #chash 13157  ⟨“cs3 13633  ⟨“cs4 13634 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-s4 13641 This theorem is referenced by:  3wlkd  27148
 Copyright terms: Public domain W3C validator