MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkd Structured version   Visualization version   GIF version

Theorem 3wlkd 27010
Description: Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 24-Mar-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
3wlkd.v 𝑉 = (Vtx‘𝐺)
3wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
3wlkd (𝜑𝐹(Walks‘𝐺)𝑃)

Proof of Theorem 3wlkd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 s4cli 13608 . . . 4 ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V
31, 2eqeltri 2695 . . 3 𝑃 ∈ Word V
43a1i 11 . 2 (𝜑𝑃 ∈ Word V)
5 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
6 s3cli 13607 . . . 4 ⟨“𝐽𝐾𝐿”⟩ ∈ Word V
75, 6eqeltri 2695 . . 3 𝐹 ∈ Word V
87a1i 11 . 2 (𝜑𝐹 ∈ Word V)
91, 53wlkdlem1 26999 . . 3 (#‘𝑃) = ((#‘𝐹) + 1)
109a1i 11 . 2 (𝜑 → (#‘𝑃) = ((#‘𝐹) + 1))
11 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
12 3wlkd.n . . 3 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
13 3wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
141, 5, 11, 12, 133wlkdlem10 27009 . 2 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
151, 5, 11, 123wlkdlem5 27003 . 2 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
16 3wlkd.v . . . . 5 𝑉 = (Vtx‘𝐺)
17161vgrex 25863 . . . 4 (𝐴𝑉𝐺 ∈ V)
1817ad2antrr 761 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐺 ∈ V)
1911, 18syl 17 . 2 (𝜑𝐺 ∈ V)
20 3wlkd.i . 2 𝐼 = (iEdg‘𝐺)
211, 5, 113wlkdlem4 27002 . 2 (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)
224, 8, 10, 14, 15, 19, 16, 20, 21wlkd 26564 1 (𝜑𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  Vcvv 3195  wss 3567  {cpr 4170   class class class wbr 4644  cfv 5876  (class class class)co 6635  1c1 9922   + caddc 9924  #chash 13100  Word cword 13274  ⟨“cs3 13568  ⟨“cs4 13569  Vtxcvtx 25855  iEdgciedg 25856  Walkscwlks 26473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-hash 13101  df-word 13282  df-concat 13284  df-s1 13285  df-s2 13574  df-s3 13575  df-s4 13576  df-wlks 26476
This theorem is referenced by:  3wlkond  27011  3trld  27012
  Copyright terms: Public domain W3C validator