MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem2 Structured version   Visualization version   GIF version

Theorem addclprlem2 9593
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem addclprlem2
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclprlem1 9592 . . . . 5 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
21adantlr 746 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
3 addclprlem1 9592 . . . . . 6 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q ( +Q 𝑔) → ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵))
4 addcomnq 9527 . . . . . . 7 (𝑔 +Q ) = ( +Q 𝑔)
54breq2i 4489 . . . . . 6 (𝑥 <Q (𝑔 +Q ) ↔ 𝑥 <Q ( +Q 𝑔))
64fveq2i 5989 . . . . . . . . 9 (*Q‘(𝑔 +Q )) = (*Q‘( +Q 𝑔))
76oveq2i 6436 . . . . . . . 8 (𝑥 ·Q (*Q‘(𝑔 +Q ))) = (𝑥 ·Q (*Q‘( +Q 𝑔)))
87oveq1i 6435 . . . . . . 7 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) = ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q )
98eleq1i 2583 . . . . . 6 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵 ↔ ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵)
103, 5, 93imtr4g 283 . . . . 5 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
1110adantll 745 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
122, 11jcad 553 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵)))
13 simpl 471 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)))
14 simpl 471 . . . . 5 ((𝐴P𝑔𝐴) → 𝐴P)
15 simpl 471 . . . . 5 ((𝐵P𝐵) → 𝐵P)
1614, 15anim12i 587 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝐴P𝐵P))
17 df-plp 9559 . . . . 5 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
18 addclnq 9521 . . . . 5 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
1917, 18genpprecl 9577 . . . 4 ((𝐴P𝐵P) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2013, 16, 193syl 18 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2112, 20syld 45 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
22 distrnq 9537 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ))
23 mulassnq 9535 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
2422, 23eqtr3i 2538 . . . 4 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
25 mulcomnq 9529 . . . . . . 7 ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q )))
26 elprnq 9567 . . . . . . . . 9 ((𝐴P𝑔𝐴) → 𝑔Q)
27 elprnq 9567 . . . . . . . . 9 ((𝐵P𝐵) → Q)
2826, 27anim12i 587 . . . . . . . 8 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑔QQ))
29 addclnq 9521 . . . . . . . 8 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
30 recidnq 9541 . . . . . . . 8 ((𝑔 +Q ) ∈ Q → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3128, 29, 303syl 18 . . . . . . 7 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3225, 31syl5eq 2560 . . . . . 6 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = 1Q)
3332oveq2d 6441 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = (𝑥 ·Q 1Q))
34 mulidnq 9539 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3533, 34sylan9eq 2568 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = 𝑥)
3624, 35syl5eq 2560 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = 𝑥)
3736eleq1d 2576 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵) ↔ 𝑥 ∈ (𝐴 +P 𝐵)))
3821, 37sylibd 227 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938   class class class wbr 4481  cfv 5689  (class class class)co 6425  Qcnq 9428  1Qc1q 9429   +Q cplq 9431   ·Q cmq 9432  *Qcrq 9433   <Q cltq 9434  Pcnp 9435   +P cpp 9437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-inf2 8296
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-oadd 7326  df-omul 7327  df-er 7504  df-ni 9448  df-pli 9449  df-mi 9450  df-lti 9451  df-plpq 9484  df-mpq 9485  df-ltpq 9486  df-enq 9487  df-nq 9488  df-erq 9489  df-plq 9490  df-mq 9491  df-1nq 9492  df-rq 9493  df-ltnq 9494  df-np 9557  df-plp 9559
This theorem is referenced by:  addclpr  9594
  Copyright terms: Public domain W3C validator