MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsdom Structured version   Visualization version   GIF version

Theorem alephsdom 8854
Description: If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephsdom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵)))

Proof of Theorem alephsdom
StepHypRef Expression
1 simpl 473 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
2 alephon 8837 . . . 4 (ℵ‘𝐵) ∈ On
3 onenon 8720 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
42, 3ax-mp 5 . . 3 (ℵ‘𝐵) ∈ dom card
5 cardsdomel 8745 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵))))
61, 4, 5sylancl 693 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵))))
7 alephcard 8838 . . 3 (card‘(ℵ‘𝐵)) = (ℵ‘𝐵)
87eleq2i 2696 . 2 (𝐴 ∈ (card‘(ℵ‘𝐵)) ↔ 𝐴 ∈ (ℵ‘𝐵))
96, 8syl6rbb 277 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1992   class class class wbr 4618  dom cdm 5079  Oncon0 5685  cfv 5850  csdm 7899  cardccrd 8706  cale 8707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-oi 8360  df-har 8408  df-card 8710  df-aleph 8711
This theorem is referenced by:  alephdom2  8855
  Copyright terms: Public domain W3C validator