Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsdom Structured version   Visualization version   GIF version

Theorem alephsdom 9099
 Description: If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephsdom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵)))

Proof of Theorem alephsdom
StepHypRef Expression
1 simpl 474 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
2 alephon 9082 . . . 4 (ℵ‘𝐵) ∈ On
3 onenon 8965 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
42, 3ax-mp 5 . . 3 (ℵ‘𝐵) ∈ dom card
5 cardsdomel 8990 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵))))
61, 4, 5sylancl 697 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵))))
7 alephcard 9083 . . 3 (card‘(ℵ‘𝐵)) = (ℵ‘𝐵)
87eleq2i 2831 . 2 (𝐴 ∈ (card‘(ℵ‘𝐵)) ↔ 𝐴 ∈ (ℵ‘𝐵))
96, 8syl6rbb 277 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∈ wcel 2139   class class class wbr 4804  dom cdm 5266  Oncon0 5884  ‘cfv 6049   ≺ csdm 8120  cardccrd 8951  ℵcale 8952 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-oi 8580  df-har 8628  df-card 8955  df-aleph 8956 This theorem is referenced by:  alephdom2  9100
 Copyright terms: Public domain W3C validator