MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avgle Structured version   Visualization version   GIF version

Theorem avgle 11116
Description: The average of two numbers is less than or equal to at least one of them. (Contributed by NM, 9-Dec-2005.) (Revised by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avgle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))

Proof of Theorem avgle
StepHypRef Expression
1 letric 9983 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
21orcomd 401 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴𝐴𝐵))
3 avgle2 11115 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴))
43ancoms 467 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴))
5 recn 9877 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 recn 9877 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
7 addcom 10068 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
85, 6, 7syl2an 492 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
98oveq1d 6537 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) / 2) = ((𝐵 + 𝐴) / 2))
109breq1d 4582 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴))
114, 10bitr4d 269 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐴))
12 avgle2 11115 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
1311, 12orbi12d 741 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴𝐵) ↔ (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵)))
142, 13mpbid 220 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1975   class class class wbr 4572  (class class class)co 6522  cc 9785  cr 9786   + caddc 9790  cle 9926   / cdiv 10528  2c2 10912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-po 4944  df-so 4945  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-2 10921
This theorem is referenced by:  facavg  12900
  Copyright terms: Public domain W3C validator