Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrci Structured version   Visualization version   GIF version

Theorem ballotlemfrci 31785
Description: Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrci (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrci
StepHypRef Expression
1 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
2 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
3 ballotth.o . . . . . . 7 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
8 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
91, 2, 3, 4, 5, 6, 7, 8ballotlemiex 31759 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
109simpld 497 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
11 elfzuz 12905 . . . . 5 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ (ℤ‘1))
12 eluzfz2 12916 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘1) → (𝐼𝐶) ∈ (1...(𝐼𝐶)))
1310, 11, 123syl 18 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝐼𝐶)))
14 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
15 ballotth.r . . . . 5 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
16 ballotlemg . . . . 5 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
171, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16ballotlemfrc 31784 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = (𝐶 (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶))))
1813, 17mpdan 685 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = (𝐶 (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶))))
191, 2, 3, 4, 5, 6, 7, 8, 14ballotlemsi 31772 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶)‘(𝐼𝐶)) = 1)
2019oveq1d 7171 . . . 4 (𝐶 ∈ (𝑂𝐸) → (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶)) = (1...(𝐼𝐶)))
2120oveq2d 7172 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐶 (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶))) = (𝐶 (1...(𝐼𝐶))))
2218, 21eqtrd 2856 . 2 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
23 fz1ssfz0 13004 . . . 4 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
2423, 10sseldi 3965 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (0...(𝑀 + 𝑁)))
251, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16ballotlemfg 31783 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
2624, 25mpdan 685 . 2 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
279simprd 498 . 2 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
2822, 26, 273eqtr2d 2862 1 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3138  {crab 3142  cdif 3933  cin 3935  ifcif 4467  𝒫 cpw 4539   class class class wbr 5066  cmpt 5146  cima 5558  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509  infcinf 8905  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  cz 11982  cuz 12244  ...cfz 12893  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-hash 13692
This theorem is referenced by:  ballotlemrc  31788  ballotlemirc  31789
  Copyright terms: Public domain W3C validator