MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caussi Structured version   Visualization version   GIF version

Theorem caussi 23295
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
caussi (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))

Proof of Theorem caussi
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3976 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
2 xpss2 5285 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋))
31, 2ax-mp 5 . . . . . . . 8 (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)
4 sstr 3752 . . . . . . . 8 ((𝑓 ⊆ (ℂ × (𝑋𝑌)) ∧ (ℂ × (𝑋𝑌)) ⊆ (ℂ × 𝑋)) → 𝑓 ⊆ (ℂ × 𝑋))
53, 4mpan2 709 . . . . . . 7 (𝑓 ⊆ (ℂ × (𝑋𝑌)) → 𝑓 ⊆ (ℂ × 𝑋))
65anim2i 594 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋)))
76a1i 11 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌))) → (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
8 elfvdm 6381 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
9 inex1g 4953 . . . . . . 7 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
108, 9syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
11 cnex 10209 . . . . . 6 ℂ ∈ V
12 elpmg 8039 . . . . . 6 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
1310, 11, 12sylancl 697 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × (𝑋𝑌)))))
14 elpmg 8039 . . . . . 6 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
158, 11, 14sylancl 697 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (𝑋pm ℂ) ↔ (Fun 𝑓𝑓 ⊆ (ℂ × 𝑋))))
167, 13, 153imtr4d 283 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) → 𝑓 ∈ (𝑋pm ℂ)))
17 uzid 11894 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ (ℤ𝑦))
1817adantl 473 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (ℤ𝑦))
19 simp2 1132 . . . . . . . . . 10 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑓𝑧) ∈ (𝑋𝑌))
2019ralimi 3090 . . . . . . . . 9 (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌))
21 fveq2 6352 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2221eleq1d 2824 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑓𝑧) ∈ (𝑋𝑌) ↔ (𝑓𝑦) ∈ (𝑋𝑌)))
2322rspcva 3447 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝑦) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2418, 20, 23syl2an 495 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓𝑦) ∈ (𝑋𝑌))
25 inss2 3977 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑌
26 simpr 479 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ (𝑋𝑌))
2725, 26sseldi 3742 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
2825a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑌)
2928sselda 3744 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑧) ∈ 𝑌)
30 simplr 809 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (𝑓𝑦) ∈ 𝑌)
3129, 30ovresd 6966 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) = ((𝑓𝑧)𝐷(𝑓𝑦)))
3231breq1d 4814 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 ↔ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3332biimpd 219 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) ∧ (𝑓𝑧) ∈ (𝑋𝑌)) → (((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥 → ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
3433imdistanda 731 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
351a1i 11 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (𝑋𝑌) ⊆ 𝑋)
3635sseld 3743 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → ((𝑓𝑧) ∈ (𝑋𝑌) → (𝑓𝑧) ∈ 𝑋))
3736anim1d 589 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3834, 37syld 47 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ 𝑌) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
3927, 38syldan 488 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4039anim2d 590 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
41 3anass 1081 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)))
42 3anass 1081 . . . . . . . . . . 11 ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥) ↔ (𝑧 ∈ dom 𝑓 ∧ ((𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4340, 41, 423imtr4g 285 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → ((𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → (𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4443ralimdv 3101 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ (𝑓𝑦) ∈ (𝑋𝑌)) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4544impancom 455 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ((𝑓𝑦) ∈ (𝑋𝑌) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4624, 45mpd 15 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) ∧ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))
4746ex 449 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ℤ) → (∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4847reximdva 3155 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∃𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
4948ralimdv 3101 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥)))
5016, 49anim12d 587 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
51 xmetres 22370 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
52 iscau2 23275 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
5351, 52syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ (𝑓 ∈ ((𝑋𝑌) ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ (𝑋𝑌) ∧ ((𝑓𝑧)(𝐷 ↾ (𝑌 × 𝑌))(𝑓𝑦)) < 𝑥))))
54 iscau2 23275 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℤ ∀𝑧 ∈ (ℤ𝑦)(𝑧 ∈ dom 𝑓 ∧ (𝑓𝑧) ∈ 𝑋 ∧ ((𝑓𝑧)𝐷(𝑓𝑦)) < 𝑥))))
5550, 53, 543imtr4d 283 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝑓 ∈ (Cau‘𝐷)))
5655ssrdv 3750 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  cin 3714  wss 3715   class class class wbr 4804   × cxp 5264  dom cdm 5266  cres 5268  Fun wfun 6043  cfv 6049  (class class class)co 6813  pm cpm 8024  cc 10126   < clt 10266  cz 11569  cuz 11879  +crp 12025  ∞Metcxmt 19933  Caucca 23251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-neg 10461  df-z 11570  df-uz 11880  df-rp 12026  df-xadd 12140  df-psmet 19940  df-xmet 19941  df-bl 19943  df-cau 23254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator