MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Visualization version   GIF version

Theorem causs 22849
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem causs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 22833 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
2 elfvdm 6115 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 9874 . . . . . . . . . . 11 ℂ ∈ V
4 elpmg 7737 . . . . . . . . . . 11 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 692 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65biimpa 499 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
71, 6syldan 485 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
87simprd 477 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ⊆ (ℂ × 𝑋))
9 rnss 5262 . . . . . . 7 (𝐹 ⊆ (ℂ × 𝑋) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
108, 9syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
11 rnxpss 5471 . . . . . 6 ran (ℂ × 𝑋) ⊆ 𝑋
1210, 11syl6ss 3579 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
1312adantlr 746 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
14 frn 5952 . . . . 5 (𝐹:ℕ⟶𝑌 → ran 𝐹𝑌)
1514ad2antlr 758 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑌)
1613, 15ssind 3798 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ (𝑋𝑌))
1716ex 448 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) → ran 𝐹 ⊆ (𝑋𝑌)))
18 xmetres 21927 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
19 caufpm 22833 . . . . . . . . 9 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
2018, 19sylan 486 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
21 inex1g 4724 . . . . . . . . . . 11 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
222, 21syl 17 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
23 elpmg 7737 . . . . . . . . . 10 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2422, 3, 23sylancl 692 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2524biimpa 499 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2620, 25syldan 485 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2726simprd 477 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ (ℂ × (𝑋𝑌)))
28 rnss 5262 . . . . . 6 (𝐹 ⊆ (ℂ × (𝑋𝑌)) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
2927, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
30 rnxpss 5471 . . . . 5 ran (ℂ × (𝑋𝑌)) ⊆ (𝑋𝑌)
3129, 30syl6ss 3579 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ (𝑋𝑌))
3231ex 448 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
3332adantr 479 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
34 ffn 5944 . . . 4 (𝐹:ℕ⟶𝑌𝐹 Fn ℕ)
35 df-f 5794 . . . . 5 (𝐹:ℕ⟶(𝑋𝑌) ↔ (𝐹 Fn ℕ ∧ ran 𝐹 ⊆ (𝑋𝑌)))
3635simplbi2 652 . . . 4 (𝐹 Fn ℕ → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
3734, 36syl 17 . . 3 (𝐹:ℕ⟶𝑌 → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
38 inss2 3795 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑌
3938a1i 11 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑌)
40 fss 5955 . . . . . . . 8 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑌) → 𝐹:ℕ⟶𝑌)
4139, 40sylan2 489 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐹:ℕ⟶𝑌)
4241ancoms 467 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑌)
43 ffvelrn 6250 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑌)
4443adantr 479 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ∈ 𝑌)
45 eluznn 11593 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ ℕ)
46 ffvelrn 6250 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑌𝑧 ∈ ℕ) → (𝐹𝑧) ∈ 𝑌)
4745, 46sylan2 489 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌 ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦))) → (𝐹𝑧) ∈ 𝑌)
4847anassrs 677 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ∈ 𝑌)
4944, 48ovresd 6677 . . . . . . . . . 10 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → ((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) = ((𝐹𝑦)𝐷(𝐹𝑧)))
5049breq1d 4587 . . . . . . . . 9 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5150ralbidva 2967 . . . . . . . 8 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5251rexbidva 3030 . . . . . . 7 (𝐹:ℕ⟶𝑌 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5352ralbidv 2968 . . . . . 6 (𝐹:ℕ⟶𝑌 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5442, 53syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
55 nnuz 11558 . . . . . 6 ℕ = (ℤ‘1)
5618adantr 479 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
57 1zzd 11244 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 1 ∈ ℤ)
58 eqidd 2610 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐹𝑧))
59 eqidd 2610 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = (𝐹𝑦))
60 simpr 475 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶(𝑋𝑌))
6155, 56, 57, 58, 59, 60iscauf 22831 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥))
62 simpl 471 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
63 id 22 . . . . . . 7 (𝐹:ℕ⟶(𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌))
64 inss1 3794 . . . . . . . 8 (𝑋𝑌) ⊆ 𝑋
6564a1i 11 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑋)
66 fss 5955 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑋) → 𝐹:ℕ⟶𝑋)
6763, 65, 66syl2anr 493 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑋)
6855, 62, 57, 58, 59, 67iscauf 22831 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
6954, 61, 683bitr4rd 299 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
7069ex 448 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹:ℕ⟶(𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7137, 70sylan9r 687 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (ran 𝐹 ⊆ (𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7217, 33, 71pm5.21ndd 367 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976  wral 2895  wrex 2896  Vcvv 3172  cin 3538  wss 3539   class class class wbr 4577   × cxp 5026  dom cdm 5028  ran crn 5029  cres 5030  Fun wfun 5784   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  pm cpm 7723  cc 9791  1c1 9794   < clt 9931  cn 10870  cuz 11522  +crp 11667  ∞Metcxmt 19501  Caucca 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-z 11214  df-uz 11523  df-rp 11668  df-xneg 11781  df-xadd 11782  df-psmet 19508  df-xmet 19509  df-bl 19511  df-cau 22807
This theorem is referenced by:  minvecolem4a  26951  hhsscms  27354
  Copyright terms: Public domain W3C validator