MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau2 Structured version   Visualization version   GIF version

Theorem iscau2 22798
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷," using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥

Proof of Theorem iscau2
StepHypRef Expression
1 iscau 22797 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥))))
2 elfvdm 6112 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 9870 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 7733 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 692 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65simprbda 650 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → Fun 𝐹)
7 ffvresb 6283 . . . . . . . 8 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
86, 7syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
98rexbidv 3030 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
109adantr 479 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
11 uzid 11531 . . . . . . . . . . 11 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1211adantl 480 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ (ℤ𝑗))
13 eleq1 2672 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 ∈ dom 𝐹𝑗 ∈ dom 𝐹))
14 fveq2 6085 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2668 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)))
1613, 15anbi12d 742 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1716rspcv 3274 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1812, 17syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
19 n0i 3875 . . . . . . . . . . . 12 ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → ¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
20 blf 21960 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21 fdm 5947 . . . . . . . . . . . . . . 15 ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 → dom (ball‘𝐷) = (𝑋 × ℝ*))
2220, 21syl 17 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → dom (ball‘𝐷) = (𝑋 × ℝ*))
23 ndmovg 6689 . . . . . . . . . . . . . . 15 ((dom (ball‘𝐷) = (𝑋 × ℝ*) ∧ ¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
2423ex 448 . . . . . . . . . . . . . 14 (dom (ball‘𝐷) = (𝑋 × ℝ*) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2522, 24syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2625con1d 137 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅ → ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)))
27 simpl 471 . . . . . . . . . . . 12 (((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → (𝐹𝑗) ∈ 𝑋)
2819, 26, 27syl56 35 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → (𝐹𝑗) ∈ 𝑋))
2928adantld 481 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3029ad2antrr 757 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3118, 30syld 45 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3214eleq1d 2668 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
3314oveq1d 6539 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑗)))
3433breq1d 4584 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥))
3513, 32, 343anbi123d 1390 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3635rspcv 3274 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3712, 36syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
38 simp2 1054 . . . . . . . . 9 ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋)
3937, 38syl6 34 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋))
40 rpxr 11669 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
41 elbl 21941 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
4240, 41syl3an3 1352 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
43 xmetsym 21900 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
44433expa 1256 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
45443adantl3 1211 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4645breq1d 4584 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4746pm5.32da 670 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4842, 47bitrd 266 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
49483com23 1262 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5049anbi2d 735 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
51 3anass 1034 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5250, 51syl6bbr 276 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5352ralbidv 2965 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
54533expia 1258 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5554adantr 479 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5631, 39, 55pm5.21ndd 367 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5756rexbidva 3027 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5857adantlr 746 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5910, 58bitrd 266 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6059ralbidva 2964 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6160pm5.32da 670 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
621, 61bitrd 266 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2892  wrex 2893  Vcvv 3169  wss 3536  c0 3870  𝒫 cpw 4104   class class class wbr 4574   × cxp 5023  dom cdm 5025  cres 5027  Fun wfun 5781  wf 5783  cfv 5787  (class class class)co 6524  pm cpm 7719  cc 9787  *cxr 9926   < clt 9927  cz 11207  cuz 11516  +crp 11661  ∞Metcxmt 19495  ballcbl 19497  Caucca 22774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-po 4946  df-so 4947  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-1st 7033  df-2nd 7034  df-er 7603  df-map 7720  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-neg 10117  df-z 11208  df-uz 11517  df-rp 11662  df-xadd 11776  df-psmet 19502  df-xmet 19503  df-bl 19505  df-cau 22777
This theorem is referenced by:  iscau3  22799  iscau4  22800  caun0  22802  caussi  22818
  Copyright terms: Public domain W3C validator