MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyth Structured version   Visualization version   GIF version

Theorem cayleyth 18545
Description: Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayley.x 𝑋 = (Base‘𝐺)
cayley.h 𝐻 = (SymGrp‘𝑋)
Assertion
Ref Expression
cayleyth (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠)
Distinct variable groups:   𝑓,𝑠,𝐺   𝑓,𝐻,𝑠   𝑓,𝑋,𝑠

Proof of Theorem cayleyth
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayley.x . . . 4 𝑋 = (Base‘𝐺)
2 cayley.h . . . 4 𝐻 = (SymGrp‘𝑋)
3 eqid 2823 . . . 4 (+g𝐺) = (+g𝐺)
4 eqid 2823 . . . 4 (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))
5 eqid 2823 . . . 4 ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))
61, 2, 3, 4, 5cayley 18544 . . 3 (𝐺 ∈ Grp → (ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))) ∧ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
76simp1d 1138 . 2 (𝐺 ∈ Grp → ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (SubGrp‘𝐻))
86simp2d 1139 . . 3 (𝐺 ∈ Grp → (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))))
96simp3d 1140 . . 3 (𝐺 ∈ Grp → (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))
10 f1oeq1 6606 . . . 4 (𝑓 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ↔ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1110rspcev 3625 . . 3 (((𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))) ∧ (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))):𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))) → ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))
128, 9, 11syl2anc 586 . 2 (𝐺 ∈ Grp → ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))
13 oveq2 7166 . . . . 5 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝐻s 𝑠) = (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1413oveq2d 7174 . . . 4 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝐺 GrpHom (𝐻s 𝑠)) = (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))))))
15 f1oeq3 6608 . . . 4 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (𝑓:𝑋1-1-onto𝑠𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1614, 15rexeqbidv 3404 . . 3 (𝑠 = ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) → (∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠 ↔ ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))
1716rspcev 3625 . 2 ((ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎))) ∈ (SubGrp‘𝐻) ∧ ∃𝑓 ∈ (𝐺 GrpHom (𝐻s ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))))𝑓:𝑋1-1-onto→ran (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(+g𝐺)𝑎)))) → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠)
187, 12, 17syl2anc 586 1 (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻s 𝑠))𝑓:𝑋1-1-onto𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wrex 3141  cmpt 5148  ran crn 5558  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  Grpcgrp 18105  SubGrpcsubg 18275   GrpHom cghm 18357  SymGrpcsymg 18497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-tset 16586  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-efmnd 18036  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-ghm 18358  df-ga 18422  df-symg 18498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator