Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16f Structured version   Visualization version   GIF version

Theorem cdleme16f 37434
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s t) (f(s) f(t))=(f(s) f(t)) w. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l = (le‘𝐾)
cdleme12.j = (join‘𝐾)
cdleme12.m = (meet‘𝐾)
cdleme12.a 𝐴 = (Atoms‘𝐾)
cdleme12.h 𝐻 = (LHyp‘𝐾)
cdleme12.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme12.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme12.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme16f ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝐹 𝐺) 𝑊))

Proof of Theorem cdleme16f
StepHypRef Expression
1 simp11l 1280 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ HL)
21hllatd 36515 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ Lat)
3 simp21l 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑆𝐴)
4 simp22l 1288 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑇𝐴)
5 eqid 2821 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdleme12.j . . . . . 6 = (join‘𝐾)
7 cdleme12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 36518 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆 𝑇) ∈ (Base‘𝐾))
10 simp11 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp12 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 simp13 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
13 simp21 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
14 simp23l 1290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑃𝑄)
15 simp31 1205 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑄))
16 cdleme12.l . . . . . . 7 = (le‘𝐾)
17 cdleme12.m . . . . . . 7 = (meet‘𝐾)
18 cdleme12.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
19 cdleme12.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
20 cdleme12.f . . . . . . 7 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
2116, 6, 17, 7, 18, 19, 20cdleme3fa 37387 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
2210, 11, 12, 13, 14, 15, 21syl132anc 1384 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐹𝐴)
23 simp22 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
24 simp32 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝑇 (𝑃 𝑄))
25 cdleme12.g . . . . . . 7 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
2616, 6, 17, 7, 18, 19, 25cdleme3fa 37387 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄))) → 𝐺𝐴)
2710, 11, 12, 23, 14, 24, 26syl132anc 1384 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐺𝐴)
285, 6, 7hlatjcl 36518 . . . . 5 ((𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴) → (𝐹 𝐺) ∈ (Base‘𝐾))
291, 22, 27, 28syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝐹 𝐺) ∈ (Base‘𝐾))
305, 16, 17latmle2 17687 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐹 𝐺) ∈ (Base‘𝐾)) → ((𝑆 𝑇) (𝐹 𝐺)) (𝐹 𝐺))
312, 9, 29, 30syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) (𝐹 𝐺))
3216, 6, 17, 7, 18, 19, 20, 25cdleme15 37429 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) 𝑊)
335, 17latmcl 17662 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ (𝐹 𝐺) ∈ (Base‘𝐾)) → ((𝑆 𝑇) (𝐹 𝐺)) ∈ (Base‘𝐾))
342, 9, 29, 33syl3anc 1367 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) ∈ (Base‘𝐾))
35 simp11r 1281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑊𝐻)
365, 18lhpbase 37149 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3735, 36syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑊 ∈ (Base‘𝐾))
385, 16, 17latlem12 17688 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑆 𝑇) (𝐹 𝐺)) ∈ (Base‘𝐾) ∧ (𝐹 𝐺) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑆 𝑇) (𝐹 𝐺)) (𝐹 𝐺) ∧ ((𝑆 𝑇) (𝐹 𝐺)) 𝑊) ↔ ((𝑆 𝑇) (𝐹 𝐺)) ((𝐹 𝐺) 𝑊)))
392, 34, 29, 37, 38syl13anc 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((((𝑆 𝑇) (𝐹 𝐺)) (𝐹 𝐺) ∧ ((𝑆 𝑇) (𝐹 𝐺)) 𝑊) ↔ ((𝑆 𝑇) (𝐹 𝐺)) ((𝐹 𝐺) 𝑊)))
4031, 32, 39mpbi2and 710 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) ((𝐹 𝐺) 𝑊))
41 hlatl 36511 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
421, 41syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ AtLat)
4316, 6, 17, 7, 18, 19, 20, 25cdleme16d 37432 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) ∈ 𝐴)
4416, 6, 17, 7, 18, 19, 20cdleme3 37388 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐹 𝑊)
4510, 11, 12, 13, 14, 15, 44syl132anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝐹 𝑊)
4616, 6, 17, 7, 18, 19, 20, 25cdleme16b 37430 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐹𝐺)
4716, 6, 17, 7, 18lhpat 37194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐴 ∧ ¬ 𝐹 𝑊) ∧ (𝐺𝐴𝐹𝐺)) → ((𝐹 𝐺) 𝑊) ∈ 𝐴)
4810, 22, 45, 27, 46, 47syl122anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝐹 𝐺) 𝑊) ∈ 𝐴)
4916, 7atcmp 36462 . . 3 ((𝐾 ∈ AtLat ∧ ((𝑆 𝑇) (𝐹 𝐺)) ∈ 𝐴 ∧ ((𝐹 𝐺) 𝑊) ∈ 𝐴) → (((𝑆 𝑇) (𝐹 𝐺)) ((𝐹 𝐺) 𝑊) ↔ ((𝑆 𝑇) (𝐹 𝐺)) = ((𝐹 𝐺) 𝑊)))
5042, 43, 48, 49syl3anc 1367 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (((𝑆 𝑇) (𝐹 𝐺)) ((𝐹 𝐺) 𝑊) ↔ ((𝑆 𝑇) (𝐹 𝐺)) = ((𝐹 𝐺) 𝑊)))
5140, 50mpbid 234 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝐹 𝐺) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Latclat 17655  Atomscatm 36414  AtLatcal 36415  HLchlt 36501  LHypclh 37135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139
This theorem is referenced by:  cdleme16g  37435
  Copyright terms: Public domain W3C validator