Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27a Structured version   Visualization version   GIF version

Theorem cdleme27a 34469
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme26f 34465 with s and t swapped (this case is not mentioned by them). If s t v, then f(s) fs(t) v. TODO: FIX COMMENT. (Contributed by NM, 3-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme27a
StepHypRef Expression
1 simp211 1191 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp221 1194 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp222 1195 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp213 1193 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
5 simp223 1196 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
6 simp23r 1175 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑉𝐴𝑉 𝑊))
7 simp212 1192 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑃𝑄)
8 simp1l 1077 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
9 simp1r 1078 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
107, 8, 93jca 1234 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)))
11 simp3 1055 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡 𝑉) = (𝑃 𝑄))
12 cdleme26.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdleme26.l . . . . . . . 8 = (le‘𝐾)
14 cdleme26.j . . . . . . . 8 = (join‘𝐾)
15 cdleme26.m . . . . . . . 8 = (meet‘𝐾)
16 cdleme26.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
17 cdleme26.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
18 cdleme27.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
19 cdleme27.z . . . . . . . 8 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
20 cdleme27.n . . . . . . . 8 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
21 cdleme27.o . . . . . . . 8 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
22 cdleme27.d . . . . . . . 8 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
23 cdleme27.e . . . . . . . 8 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
2412, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23cdleme26ee 34462 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (𝑡 𝑉) = (𝑃 𝑄))) → 𝐷 (𝐸 𝑉))
251, 2, 3, 4, 5, 6, 10, 11, 24syl332anc 1348 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
26253expia 1258 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) = (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
27 simp1r 1078 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
28 simp11l 1164 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
29283ad2ant2 1075 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐾 ∈ HL)
30 simp13l 1168 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝐴)
31303ad2ant2 1075 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝐴)
32 simp23l 1174 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑡𝐴)
33323ad2ant2 1075 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡𝐴)
34 simp3ll 1124 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝑡)
35343ad2ant2 1075 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝑡)
3631, 33, 353jca 1234 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑠𝐴𝑡𝐴𝑠𝑡))
37 simp21l 1170 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝐴)
38373ad2ant2 1075 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝐴)
39 simp22l 1172 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑄𝐴)
40393ad2ant2 1075 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑄𝐴)
41 simp212 1192 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝑄)
42 simp3rl 1126 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
43423ad2ant2 1075 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑉𝐴)
44 simp3 1055 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑡 𝑉) ≠ (𝑃 𝑄))
45 simp3lr 1125 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠 (𝑡 𝑉))
46453ad2ant2 1075 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑡 𝑉))
47 simp1l 1077 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
4844, 46, 473jca 1234 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))
4913, 14, 15, 16, 17cdleme22b 34443 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑠𝐴𝑡𝐴𝑠𝑡)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
5029, 36, 38, 40, 41, 43, 48, 49syl232anc 1344 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ¬ 𝑡 (𝑃 𝑄))
5127, 50pm2.21dd 184 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
52513expia 1258 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) ≠ (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
5326, 52pm2.61dne 2867 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐸 𝑉))
54 cdleme27.c . . . . . 6 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
55 iftrue 4041 . . . . . 6 (𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐷)
5654, 55syl5eq 2655 . . . . 5 (𝑠 (𝑃 𝑄) → 𝐶 = 𝐷)
5756ad2antrr 757 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
58 cdleme27.y . . . . . . 7 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
59 iftrue 4041 . . . . . . 7 (𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐸)
6058, 59syl5eq 2655 . . . . . 6 (𝑡 (𝑃 𝑄) → 𝑌 = 𝐸)
6160oveq1d 6542 . . . . 5 (𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐸 𝑉))
6261ad2antlr 758 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
6353, 57, 623brtr4d 4609 . . 3 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
6463ex 448 . 2 ((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
65 simpr11 1137 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
66 simpr12 1138 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
67 simpll 785 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑠 (𝑃 𝑄))
6866, 67jca 552 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑠 (𝑃 𝑄)))
69 simpr23 1142 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
70 simpr21 1140 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
71 simpr22 1141 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
72 simpr13 1139 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
73 simplr 787 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
74 simpr3l 1114 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
75 simpr3r 1115 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
76 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
77 eqid 2609 . . . . . 6 ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))
78 eqid 2609 . . . . . . 7 (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))))) = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
7919, 20, 76, 77, 22, 78cdleme25cv 34460 . . . . . 6 𝐷 = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
8012, 13, 14, 15, 16, 17, 18, 76, 77, 79cdleme26f 34465 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑠 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐷 (𝐺 𝑉))
8165, 68, 69, 70, 71, 72, 73, 74, 75, 80syl333anc 1349 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐺 𝑉))
8256ad2antrr 757 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
83 iffalse 4044 . . . . . . 7 𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐺)
8458, 83syl5eq 2655 . . . . . 6 𝑡 (𝑃 𝑄) → 𝑌 = 𝐺)
8584oveq1d 6542 . . . . 5 𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐺 𝑉))
8685ad2antlr 758 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
8781, 82, 863brtr4d 4609 . . 3 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
8887ex 448 . 2 ((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
89 simpr11 1137 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simpr12 1138 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
91 simplr 787 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑡 (𝑃 𝑄))
9290, 91jca 552 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑡 (𝑃 𝑄)))
93 simpr13 1139 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
94 simpr21 1140 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
95 simpr22 1141 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
96 simpr23 1142 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
97 simpll 785 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
98 simpr3l 1114 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
99 simpr3r 1115 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
100 cdleme27.f . . . . . 6 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
101 eqid 2609 . . . . . 6 ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))
102 eqid 2609 . . . . . . 7 (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))))) = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10319, 21, 100, 101, 23, 102cdleme25cv 34460 . . . . . 6 𝐸 = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10412, 13, 14, 15, 16, 17, 18, 100, 101, 103cdleme26f2 34467 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑡 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (¬ 𝑠 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐸 𝑉))
10589, 92, 93, 94, 95, 96, 97, 98, 99, 104syl333anc 1349 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐸 𝑉))
106 iffalse 4044 . . . . . 6 𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐹)
10754, 106syl5eq 2655 . . . . 5 𝑠 (𝑃 𝑄) → 𝐶 = 𝐹)
108107ad2antrr 757 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
10961ad2antlr 758 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
110105, 108, 1093brtr4d 4609 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
111110ex 448 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
112 simpr11 1137 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
113 simpr23 1142 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
114 simplr 787 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
115 simpll 785 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
116 simpr12 1138 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
117114, 115, 1163jca 1234 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄))
118 simpr21 1140 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
119 simpr22 1141 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
120 simpr13 1139 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
121 simpr3l 1114 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
122 simpr3r 1115 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
12313, 14, 15, 16, 17, 18, 100, 76cdleme22g 34450 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))
124112, 113, 117, 118, 119, 120, 121, 122, 123syl323anc 1347 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐺 𝑉))
125107ad2antrr 757 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
12685ad2antlr 758 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
127124, 125, 1263brtr4d 4609 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
128127ex 448 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
12964, 88, 111, 1284cases 986 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  ifcif 4035   class class class wbr 4577  cfv 5790  crio 6488  (class class class)co 6527  Basecbs 15641  lecple 15721  joincjn 16713  meetcmee 16714  Atomscatm 33364  HLchlt 33451  LHypclh 34084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33053
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-undef 7263  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-llines 33598  df-lplanes 33599  df-lvols 33600  df-lines 33601  df-psubsp 33603  df-pmap 33604  df-padd 33896  df-lhyp 34088
This theorem is referenced by:  cdleme27N  34471  cdleme28a  34472
  Copyright terms: Public domain W3C validator