Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf1 Structured version   Visualization version   GIF version

Theorem cdlemf1 35315
Description: Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l = (le‘𝐾)
cdlemf1.j = (join‘𝐾)
cdlemf1.a 𝐴 = (Atoms‘𝐾)
cdlemf1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemf1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐻,𝑞   𝐾,𝑞   ,𝑞   𝑃,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem cdlemf1
StepHypRef Expression
1 simp1l 1083 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp3l 1087 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
3 simp2l 1085 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐴)
4 simp2r 1086 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈 𝑊)
5 simp3r 1088 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
6 nbrne2 4638 . . . . 5 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
76necomd 2851 . . . 4 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑃𝑈)
84, 5, 7syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝑈)
9 cdlemf1.l . . . 4 = (le‘𝐾)
10 cdlemf1.j . . . 4 = (join‘𝐾)
11 cdlemf1.a . . . 4 𝐴 = (Atoms‘𝐾)
129, 10, 11hlsupr 34138 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ 𝑃𝑈) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
131, 2, 3, 8, 12syl31anc 1326 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)))
14 simp31 1095 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑃)
1514necomd 2851 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝑞)
16 simp13r 1175 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑃 𝑊)
17 simp12r 1173 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 𝑊)
18 simp11l 1170 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ HL)
19 hllat 34116 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2018, 19syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ Lat)
21 eqid 2626 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
2221, 11atbase 34042 . . . . . . . . . . 11 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
23223ad2ant2 1081 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 ∈ (Base‘𝐾))
24 simp12l 1172 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈𝐴)
2521, 11atbase 34042 . . . . . . . . . . 11 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 ∈ (Base‘𝐾))
27 simp11r 1171 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊𝐻)
28 cdlemf1.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
2921, 28lhpbase 34750 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3027, 29syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑊 ∈ (Base‘𝐾))
3121, 9, 10latjle12 16978 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3220, 23, 26, 30, 31syl13anc 1325 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) ↔ (𝑞 𝑈) 𝑊))
3332biimpd 219 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑊𝑈 𝑊) → (𝑞 𝑈) 𝑊))
3417, 33mpan2d 709 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊 → (𝑞 𝑈) 𝑊))
35 simp33 1097 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞 (𝑃 𝑈))
36 hlcvl 34112 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
3718, 36syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝐾 ∈ CvLat)
38 simp2 1060 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝐴)
39 simp13l 1174 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃𝐴)
40 simp32 1096 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑞𝑈)
419, 10, 11cvlatexch2 34090 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑈𝐴) ∧ 𝑞𝑈) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4237, 38, 39, 24, 40, 41syl131anc 1336 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑃 (𝑞 𝑈)))
4335, 42mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 (𝑞 𝑈))
4421, 11atbase 34042 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4539, 44syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑃 ∈ (Base‘𝐾))
4621, 10, 11hlatjcl 34119 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑞𝐴𝑈𝐴) → (𝑞 𝑈) ∈ (Base‘𝐾))
4718, 38, 24, 46syl3anc 1323 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑈) ∈ (Base‘𝐾))
4821, 9lattr 16972 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑞 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
4920, 45, 47, 30, 48syl13anc 1325 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑃 (𝑞 𝑈) ∧ (𝑞 𝑈) 𝑊) → 𝑃 𝑊))
5043, 49mpand 710 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ((𝑞 𝑈) 𝑊𝑃 𝑊))
5134, 50syld 47 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 𝑊𝑃 𝑊))
5216, 51mtod 189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → ¬ 𝑞 𝑊)
539, 10, 11cvlatexch1 34089 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑈𝐴𝑃𝐴) ∧ 𝑞𝑃) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5437, 38, 24, 39, 14, 53syl131anc 1336 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑞 (𝑃 𝑈) → 𝑈 (𝑃 𝑞)))
5535, 54mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → 𝑈 (𝑃 𝑞))
5615, 52, 553jca 1240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑞𝐴 ∧ (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈))) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
57563exp 1261 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑞𝐴 → ((𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))))
5857reximdvai 3014 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑞𝐴 (𝑞𝑃𝑞𝑈𝑞 (𝑃 𝑈)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞))))
5913, 58mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑈 (𝑃 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wrex 2913   class class class wbr 4618  cfv 5850  (class class class)co 6605  Basecbs 15776  lecple 15864  joincjn 16860  Latclat 16961  Atomscatm 34016  CvLatclc 34018  HLchlt 34103  LHypclh 34736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-lat 16962  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-lhyp 34740
This theorem is referenced by:  cdlemf2  35316  cdlemg5  35359
  Copyright terms: Public domain W3C validator