Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg10bALTN Structured version   Visualization version   GIF version

Theorem cdlemg10bALTN 37654
Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m 37622 and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg10bALTN (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) (𝐹𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))

Proof of Theorem cdlemg10bALTN
StepHypRef Expression
1 simp11 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ HL)
2 simp12 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐻)
31, 2jca 512 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 3simpc 1142 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
5 simp13 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
6 cdlemg8.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemg8.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg8.l . . . . 5 = (le‘𝐾)
9 cdlemg8.j . . . . 5 = (join‘𝐾)
10 cdlemg8.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 cdlemg8.m . . . . 5 = (meet‘𝐾)
12 eqid 2821 . . . . 5 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
136, 7, 8, 9, 10, 11, 12cdlemg2k 37619 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
143, 4, 5, 13syl3anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
1514oveq1d 7160 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) (𝐹𝑄)) 𝑊) = (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊))
16 simp2 1129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
178, 10, 6, 7ltrnel 37157 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
183, 5, 16, 17syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
19 eqid 2821 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
208, 11, 19, 10, 6lhpmat 37048 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
213, 18, 20syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
2221oveq1d 7160 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) 𝑊) ((𝑃 𝑄) 𝑊)) = ((0.‘𝐾) ((𝑃 𝑄) 𝑊)))
23 simp2l 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑃𝐴)
248, 10, 6, 7ltrnat 37158 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
253, 5, 23, 24syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) ∈ 𝐴)
261hllatd 36382 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ Lat)
27 simp3l 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑄𝐴)
28 eqid 2821 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2928, 9, 10hlatjcl 36385 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
301, 23, 27, 29syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3128, 6lhpbase 37016 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
322, 31syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
3328, 11latmcl 17652 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
3426, 30, 32, 33syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
3528, 8, 11latmle2 17677 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
3626, 30, 32, 35syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 𝑄) 𝑊) 𝑊)
3728, 8, 9, 11, 10atmod4i2 36885 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) 𝑊) 𝑊) → (((𝐹𝑃) 𝑊) ((𝑃 𝑄) 𝑊)) = (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊))
381, 25, 34, 32, 36, 37syl131anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) 𝑊) ((𝑃 𝑄) 𝑊)) = (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊))
39 hlol 36379 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ OL)
4128, 9, 19olj02 36244 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
4240, 34, 41syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
4322, 38, 423eqtr3d 2864 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊) = ((𝑃 𝑄) 𝑊))
4415, 43eqtrd 2856 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) (𝐹𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5058  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  joincjn 17544  meetcmee 17545  0.cp0 17637  Latclat 17645  OLcol 36192  Atomscatm 36281  HLchlt 36368  LHypclh 37002  LTrncltrn 37119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-riotaBAD 35971
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7680  df-2nd 7681  df-undef 7930  df-map 8398  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-llines 36516  df-lplanes 36517  df-lvols 36518  df-lines 36519  df-psubsp 36521  df-pmap 36522  df-padd 36814  df-lhyp 37006  df-laut 37007  df-ldil 37122  df-ltrn 37123  df-trl 37177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator