Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg10bALTN Structured version   Visualization version   GIF version

Theorem cdlemg10bALTN 35425
Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m 35393 and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg10bALTN (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) (𝐹𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))

Proof of Theorem cdlemg10bALTN
StepHypRef Expression
1 simp11 1089 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ HL)
2 simp12 1090 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐻)
31, 2jca 554 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 3simpc 1058 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
5 simp13 1091 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
6 cdlemg8.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemg8.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg8.l . . . . 5 = (le‘𝐾)
9 cdlemg8.j . . . . 5 = (join‘𝐾)
10 cdlemg8.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 cdlemg8.m . . . . 5 = (meet‘𝐾)
12 eqid 2621 . . . . 5 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
136, 7, 8, 9, 10, 11, 12cdlemg2k 35390 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
143, 4, 5, 13syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
1514oveq1d 6622 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) (𝐹𝑄)) 𝑊) = (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊))
16 simp2 1060 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
178, 10, 6, 7ltrnel 34926 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
183, 5, 16, 17syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
19 eqid 2621 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
208, 11, 19, 10, 6lhpmat 34817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
213, 18, 20syl2anc 692 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
2221oveq1d 6622 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) 𝑊) ((𝑃 𝑄) 𝑊)) = ((0.‘𝐾) ((𝑃 𝑄) 𝑊)))
23 simp2l 1085 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑃𝐴)
248, 10, 6, 7ltrnat 34927 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
253, 5, 23, 24syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) ∈ 𝐴)
26 hllat 34151 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
271, 26syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ Lat)
28 simp3l 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑄𝐴)
29 eqid 2621 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
3029, 9, 10hlatjcl 34154 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
311, 23, 28, 30syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3229, 6lhpbase 34785 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
332, 32syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊 ∈ (Base‘𝐾))
3429, 11latmcl 16976 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
3527, 31, 33, 34syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
3629, 8, 11latmle2 17001 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
3727, 31, 33, 36syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 𝑄) 𝑊) 𝑊)
3829, 8, 9, 11, 10atmod4i2 34654 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) 𝑊) 𝑊) → (((𝐹𝑃) 𝑊) ((𝑃 𝑄) 𝑊)) = (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊))
391, 25, 35, 33, 37, 38syl131anc 1336 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) 𝑊) ((𝑃 𝑄) 𝑊)) = (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊))
40 hlol 34149 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
411, 40syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ OL)
4229, 9, 19olj02 34014 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
4341, 35, 42syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
4422, 39, 433eqtr3d 2663 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) ((𝑃 𝑄) 𝑊)) 𝑊) = ((𝑃 𝑄) 𝑊))
4515, 44eqtrd 2655 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝐹𝑃) (𝐹𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4615  cfv 5849  (class class class)co 6607  Basecbs 15784  lecple 15872  joincjn 16868  meetcmee 16869  0.cp0 16961  Latclat 16969  OLcol 33962  Atomscatm 34051  HLchlt 34138  LHypclh 34771  LTrncltrn 34888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-riotaBAD 33740
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-1st 7116  df-2nd 7117  df-undef 7347  df-map 7807  df-preset 16852  df-poset 16870  df-plt 16882  df-lub 16898  df-glb 16899  df-join 16900  df-meet 16901  df-p0 16963  df-p1 16964  df-lat 16970  df-clat 17032  df-oposet 33964  df-ol 33966  df-oml 33967  df-covers 34054  df-ats 34055  df-atl 34086  df-cvlat 34110  df-hlat 34139  df-llines 34285  df-lplanes 34286  df-lvols 34287  df-lines 34288  df-psubsp 34290  df-pmap 34291  df-padd 34583  df-lhyp 34775  df-laut 34776  df-ldil 34891  df-ltrn 34892  df-trl 34947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator