Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg42 Structured version   Visualization version   GIF version

Theorem cdlemg42 36488
 Description: Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg42.l = (le‘𝐾)
cdlemg42.j = (join‘𝐾)
cdlemg42.a 𝐴 = (Atoms‘𝐾)
cdlemg42.h 𝐻 = (LHyp‘𝐾)
cdlemg42.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg42.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg42 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))

Proof of Theorem cdlemg42
StepHypRef Expression
1 simp33 1230 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simpl1l 1255 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐾 ∈ HL)
3 simp31l 1357 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
43adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃𝐴)
5 simp1 1128 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1218 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
7 cdlemg42.l . . . . . . . . . . . 12 = (le‘𝐾)
8 cdlemg42.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
9 cdlemg42.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
10 cdlemg42.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnat 35898 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
125, 6, 3, 11syl3anc 1463 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑃) ∈ 𝐴)
1312adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐹𝑃) ∈ 𝐴)
14 cdlemg42.j . . . . . . . . . 10 = (join‘𝐾)
157, 14, 8hlatlej1 35133 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
162, 4, 13, 15syl3anc 1463 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 (𝑃 (𝐹𝑃)))
17 simpr 479 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) (𝑃 (𝐹𝑃)))
18 hllat 35122 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
192, 18syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐾 ∈ Lat)
20 eqid 2748 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2120, 8atbase 35048 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
224, 21syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 ∈ (Base‘𝐾))
23 simp2r 1219 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
247, 8, 9, 10ltrnat 35898 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
255, 23, 3, 24syl3anc 1463 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑃) ∈ 𝐴)
2625adantr 472 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ∈ 𝐴)
2720, 8atbase 35048 . . . . . . . . . 10 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ∈ (Base‘𝐾))
2920, 14, 8hlatjcl 35125 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
302, 4, 13, 29syl3anc 1463 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
3120, 7, 14latjle12 17234 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 (𝐹𝑃)) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) ↔ (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃))))
3219, 22, 28, 30, 31syl13anc 1465 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝑃 (𝐹𝑃)) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) ↔ (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃))))
3316, 17, 32mpbi2and 994 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)))
34 simpl32 1305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ≠ 𝑃)
3534necomd 2975 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 ≠ (𝐺𝑃))
367, 14, 8ps-1 35235 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴𝑃 ≠ (𝐺𝑃)) ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)) ↔ (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃))))
372, 4, 26, 35, 4, 13, 36syl132anc 1481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)) ↔ (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃))))
3833, 37mpbid 222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃)))
3938oveq1d 6816 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
40 simpl1 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpl2r 1261 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐺𝑇)
42 simpl31 1303 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
43 eqid 2748 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
44 cdlemg42.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
457, 14, 43, 8, 9, 10, 44trlval2 35922 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
4640, 41, 42, 45syl3anc 1463 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
47 simpl2l 1259 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐹𝑇)
487, 14, 43, 8, 9, 10, 44trlval2 35922 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
4940, 47, 42, 48syl3anc 1463 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
5039, 46, 493eqtr4rd 2793 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐹) = (𝑅𝐺))
5150ex 449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝐺𝑃) (𝑃 (𝐹𝑃)) → (𝑅𝐹) = (𝑅𝐺)))
5251necon3ad 2933 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) ≠ (𝑅𝐺) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃))))
531, 52mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127   ≠ wne 2920   class class class wbr 4792  ‘cfv 6037  (class class class)co 6801  Basecbs 16030  lecple 16121  joincjn 17116  meetcmee 17117  Latclat 17217  Atomscatm 35022  HLchlt 35109  LHypclh 35742  LTrncltrn 35859  trLctrl 35917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-map 8013  df-preset 17100  df-poset 17118  df-plt 17130  df-lub 17146  df-glb 17147  df-join 17148  df-meet 17149  df-p0 17211  df-lat 17218  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110  df-lhyp 35746  df-laut 35747  df-ldil 35862  df-ltrn 35863  df-trl 35918 This theorem is referenced by:  cdlemg43  36489
 Copyright terms: Public domain W3C validator