Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml1N Structured version   Visualization version   GIF version

Theorem cdleml1N 35771
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleml1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))

Proof of Theorem cdleml1N
StepHypRef Expression
1 simp1 1059 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1092 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
3 simp23 1094 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓𝑇)
4 eqid 2621 . . . . 5 (le‘𝐾) = (le‘𝐾)
5 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdleml1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
94, 5, 6, 7, 8tendotp 35556 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓))
101, 2, 3, 9syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓))
11 simp1l 1083 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
12 hlatl 34154 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝐾 ∈ AtLat)
145, 6, 8tendocl 35562 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑈𝑓) ∈ 𝑇)
151, 2, 3, 14syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ∈ 𝑇)
16 simp32 1096 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ≠ ( I ↾ 𝐵))
17 cdleml1.b . . . . . 6 𝐵 = (Base‘𝐾)
18 eqid 2621 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
1917, 18, 5, 6, 7trlnidat 34967 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑓) ∈ 𝑇 ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾))
201, 15, 16, 19syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾))
21 simp31 1095 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓 ≠ ( I ↾ 𝐵))
2217, 18, 5, 6, 7trlnidat 34967 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → (𝑅𝑓) ∈ (Atoms‘𝐾))
231, 3, 21, 22syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅𝑓) ∈ (Atoms‘𝐾))
244, 18atcmp 34105 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾) ∧ (𝑅𝑓) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑈𝑓)) = (𝑅𝑓)))
2513, 20, 23, 24syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ((𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑈𝑓)) = (𝑅𝑓)))
2610, 25mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅𝑓))
27 simp22 1093 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
284, 5, 6, 7, 8tendotp 35556 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓))
291, 27, 3, 28syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓))
305, 6, 8tendocl 35562 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑉𝑓) ∈ 𝑇)
311, 27, 3, 30syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ∈ 𝑇)
32 simp33 1097 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ≠ ( I ↾ 𝐵))
3317, 18, 5, 6, 7trlnidat 34967 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝑓) ∈ 𝑇 ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾))
341, 31, 32, 33syl3anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾))
354, 18atcmp 34105 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾) ∧ (𝑅𝑓) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑉𝑓)) = (𝑅𝑓)))
3613, 34, 23, 35syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ((𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑉𝑓)) = (𝑅𝑓)))
3729, 36mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓)) = (𝑅𝑓))
3826, 37eqtr4d 2658 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618   I cid 4989  cres 5081  cfv 5852  Basecbs 15788  lecple 15876  Atomscatm 34057  AtLatcal 34058  HLchlt 34144  LHypclh 34777  LTrncltrn 34894  trLctrl 34952  TEndoctendo 35547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-map 7811  df-preset 16856  df-poset 16874  df-plt 16886  df-lub 16902  df-glb 16903  df-join 16904  df-meet 16905  df-p0 16967  df-p1 16968  df-lat 16974  df-clat 17036  df-oposet 33970  df-ol 33972  df-oml 33973  df-covers 34060  df-ats 34061  df-atl 34092  df-cvlat 34116  df-hlat 34145  df-lhyp 34781  df-laut 34782  df-ldil 34897  df-ltrn 34898  df-trl 34953  df-tendo 35550
This theorem is referenced by:  cdleml2N  35772
  Copyright terms: Public domain W3C validator