Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml1N Structured version   Visualization version   GIF version

Theorem cdleml1N 38127
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleml1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))

Proof of Theorem cdleml1N
StepHypRef Expression
1 simp1 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
3 simp23 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓𝑇)
4 eqid 2821 . . . . 5 (le‘𝐾) = (le‘𝐾)
5 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdleml1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
94, 5, 6, 7, 8tendotp 37912 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓))
101, 2, 3, 9syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓))
11 simp1l 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
12 hlatl 36511 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝐾 ∈ AtLat)
145, 6, 8tendocl 37918 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑈𝑓) ∈ 𝑇)
151, 2, 3, 14syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ∈ 𝑇)
16 simp32 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ≠ ( I ↾ 𝐵))
17 cdleml1.b . . . . . 6 𝐵 = (Base‘𝐾)
18 eqid 2821 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
1917, 18, 5, 6, 7trlnidat 37324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑓) ∈ 𝑇 ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾))
201, 15, 16, 19syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾))
21 simp31 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓 ≠ ( I ↾ 𝐵))
2217, 18, 5, 6, 7trlnidat 37324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑓 ≠ ( I ↾ 𝐵)) → (𝑅𝑓) ∈ (Atoms‘𝐾))
231, 3, 21, 22syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅𝑓) ∈ (Atoms‘𝐾))
244, 18atcmp 36462 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝑓)) ∈ (Atoms‘𝐾) ∧ (𝑅𝑓) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑈𝑓)) = (𝑅𝑓)))
2513, 20, 23, 24syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ((𝑅‘(𝑈𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑈𝑓)) = (𝑅𝑓)))
2610, 25mpbid 234 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅𝑓))
27 simp22 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
284, 5, 6, 7, 8tendotp 37912 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓))
291, 27, 3, 28syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓))
305, 6, 8tendocl 37918 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑉𝑓) ∈ 𝑇)
311, 27, 3, 30syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ∈ 𝑇)
32 simp33 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ≠ ( I ↾ 𝐵))
3317, 18, 5, 6, 7trlnidat 37324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝑓) ∈ 𝑇 ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾))
341, 31, 32, 33syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾))
354, 18atcmp 36462 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑉𝑓)) ∈ (Atoms‘𝐾) ∧ (𝑅𝑓) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑉𝑓)) = (𝑅𝑓)))
3613, 34, 23, 35syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ((𝑅‘(𝑉𝑓))(le‘𝐾)(𝑅𝑓) ↔ (𝑅‘(𝑉𝑓)) = (𝑅𝑓)))
3729, 36mpbid 234 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑉𝑓)) = (𝑅𝑓))
3826, 37eqtr4d 2859 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066   I cid 5459  cres 5557  cfv 6355  Basecbs 16483  lecple 16572  Atomscatm 36414  AtLatcal 36415  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  trLctrl 37309  TEndoctendo 37903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906
This theorem is referenced by:  cdleml2N  38128
  Copyright terms: Public domain W3C validator