MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicer Structured version   Visualization version   GIF version

Theorem cicer 16513
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicer (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))

Proof of Theorem cicer
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5280 . . . . . 6 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
21a1i 11 . . . . 5 (𝐶 ∈ Cat → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
3 fveq2 6229 . . . . . . . . 9 (𝑓 = ⟨𝑥, 𝑦⟩ → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩))
43neeq1d 2882 . . . . . . . 8 (𝑓 = ⟨𝑥, 𝑦⟩ → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅))
54rabxp 5188 . . . . . . 7 {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
65a1i 11 . . . . . 6 (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
76releqd 5237 . . . . 5 (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}))
82, 7mpbird 247 . . . 4 (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
9 isofn 16482 . . . . . 6 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fvex 6239 . . . . . . 7 (Base‘𝐶) ∈ V
11 sqxpexg 7005 . . . . . . 7 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
1210, 11mp1i 13 . . . . . 6 (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
13 0ex 4823 . . . . . . 7 ∅ ∈ V
1413a1i 11 . . . . . 6 (𝐶 ∈ Cat → ∅ ∈ V)
15 suppvalfn 7347 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
169, 12, 14, 15syl3anc 1366 . . . . 5 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
1716releqd 5237 . . . 4 (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}))
188, 17mpbird 247 . . 3 (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅))
19 cicfval 16504 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
2019releqd 5237 . . 3 (𝐶 ∈ Cat → (Rel ( ≃𝑐𝐶) ↔ Rel ((Iso‘𝐶) supp ∅)))
2118, 20mpbird 247 . 2 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
22 cicsym 16511 . 2 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦) → 𝑦( ≃𝑐𝐶)𝑥)
23 cictr 16512 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧) → 𝑥( ≃𝑐𝐶)𝑧)
24233expb 1285 . 2 ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧)) → 𝑥( ≃𝑐𝐶)𝑧)
25 cicref 16508 . . 3 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐𝐶)𝑥)
26 ciclcl 16509 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶))
2725, 26impbida 895 . 2 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐𝐶)𝑥))
2821, 22, 24, 27iserd 7813 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  wne 2823  {crab 2945  Vcvv 3231  c0 3948  cop 4216   class class class wbr 4685  {copab 4745   × cxp 5141  Rel wrel 5148   Fn wfn 5921  cfv 5926  (class class class)co 6690   supp csupp 7340   Er wer 7784  Basecbs 15904  Catccat 16372  Isociso 16453  𝑐 ccic 16502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-supp 7341  df-er 7787  df-cat 16376  df-cid 16377  df-sect 16454  df-inv 16455  df-iso 16456  df-cic 16503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator